一种基于七号信令的局间话单采集系统研究与应用

时间:2023-07-28 07:40:41 其他范文 收藏本文 下载本文

一种基于七号信令的局间话单采集系统研究与应用(集锦5篇)由网友“小泡芙啦啦啦”投稿提供,这里小编给大家推荐一些一种基于七号信令的局间话单采集系统研究与应用,方便大家学习。

一种基于七号信令的局间话单采集系统研究与应用

篇1:一种基于七号信令的局间话单采集系统研究与应用

一种基于七号信令的局间话单采集系统研究与应用

摘要:鉴于目前网间结算的话单采集存在着实时性差、采集点分散、过分依赖交换机提供的接口以及结算欠准确等特点,介绍了一种基于七号信令系统的新式局间话单采集系统。该系统采用高阻跨接在信令链路上,实时采集链路上的消息,经过分析处理后提供给计费系统结算。具有技术先进、实时性高、容量大、可靠性高、运行稳定等特点,有效地解决了局部话单采集问题。

关键词:七号信令 话单采集 信号链路 局间

目前,电信部门与需要进行结算的通信企业通过优化网络结构、设置网关局的方式进行对等数据采集并进行结算。这种传统的数据采集方式主要依靠交换机本身数据端口,通过磁带方式或X.25口,采用CMIS/FTAM协议的模式进行话单数据采集。这种方式有一定的优势,但同时也存在着一些缺点:如实时性差、采集点分散、可靠性差等,同时在实际的互连互通实现方式中,各电信运营商通常会在话务量大的局间增设一定量的直联备份电路,以起到提高安全性和话务分流的目的。由于这部分直联电路是不经过网关局汇接的,如果只从网关局上取话单,将把这部分话单漏掉,从而造成结算的不准确。

目前网关互联互通,最常用也是最标准的信令方式就是中国七号信令方式,交换局间所有呼叫的控制信息均可通过七号信令的方式传输。因为七号信令消息中包含了生成详细话单所需的全部信息,只须从七号信令网上提取出信令消息,经过合理的筛选和配对,便可得到交换局间通信的所有详细话单。

1 基于七号信令网关采集模式

七号信令网是电话网、智能网以及各种新业务的神经和支撑网,是通信网建设维护的重要部分。根据我国七号信令技术体制要求,我国七号信令网最终采用三级准直联结构方式。SS7是公共信道信令协议,主要用于电话网内的呼叫处理,它使用电话网的基本数据通信协议,完成呼叫建立、呼叫选路并提供各种业务,由于SS7网是独立于话音/媒体流电路网的数据网,可以做到完全的冗余备份。因此,SS7对电话网络的管理比以前的技术更快、更可靠和更先进。

(本网网收集整理)

本系统直接从SS7信令链路上获取话务信令并匹配成相对应的呼叫记录(CDR)。CDR匹配完成后将被传关室本地的采集比对服务器指定目录,从交换机联机方式或者脱机方式采集来的数据也被传送到本地的采集服务器。在采集服务器中,两个源数据将进行比对,产生比对的报表,生成比对结果供维护管理人员维护交换机。同时,从信令链路上采集的数据将作为一种数据源备份留在本地,在这种模式下,由于系统是一个备用系统,整个采集过程不考虑完全备份模式。本地的采集服务器运行比对软件,主要进行数据核查、过滤、预处理等任务。在与交换机采集的数据进行比对校验并生成校验报告后,交换机采集的数据送往结算中心。在此模式下,比对服务器中将保存2个月以上的信令话单,以备今后需要。

2 七号信令话单采集系统结构设计

七号信令话单采集系统为模块化结构的分布式系统。整个系统可公分为:E1电路的高阻跨接、数字交叉连接设备、七号信令分析系统和详细话单生成软件四部分。

其中E1电路的高阻跨接、数字交叉连接设备通常分布在各个交换或传输机房中,以方便接入各七号信令链路,而七号信令分析系统和详细话单生成软件则放在中心机房,它们接收并处理各地传来的七号信令消息,生成详细话单。其各部分的连接示意图如图1所示。

图1中七号信令话音采集系统首先通过E1传输系统的高阻跨接,侦听GSM和网关局之间传输七号信令消息的E1电路。此时侦听回路中的阻抗应远远大于75Ω,只有这样才不会影响E1电话收发双方的信号,以保证局间信令系统的正常工作。

由于侦听回路中的阻抗较大(>>75Ω),所截获E1信号的强度十分微弱,因此必须将其信号放大。放大后的E1信号进入一台数字交叉连接设备,将所有包含七号信令链路数据的E1时隙交换到两条E1中进入七号信令分析系统。在这里之所以要使用数字交叉连接设备是基于以下理由:

(1)由于目前的七号信令运营网中每个E1通常只有一个或几个时隙包含有七号信令链路数据,因此必须通过数字交叉连接设备将所有这些包含有七号信令链路数据的时隙收敛到两个E1中,以方便后面的七号信令分析系统处理。

(2)考虑到高阻跨接侦听点可能分布在各地,而大容量的七号信令分析系统则放置于中心机房,所以在将七号信令链路数据传回中心前先经过数字交叉连接设备,会大大减少了传输所需要的E1数量,节约传输成本。

七号信令分析系统主要完成对31条七号信令链路消息的采集。详细话单生成软件收到从以太网传来的七号信令消息后,根据七号信令的各个用户部分(UP)的协议规则,对获得的七号信令消息做关联处理,从而产生出详细话单,并将话单格

式化为用户要求的格式。最后七号信令分析系统和详细话单生成软件提供了完善的监视和控制接口,可以便捷、有效地实现对大地域范围内系统运行状况的远程监控。所有这些功能都可以直接在原有的计算机网络上的实现,而不需要增加额外的监视信息通路,大大节省了网络系统投资成本。

2.1 E1电路的高阻跨接

由于监视七号信令系统必须在不影响局间工作的前提下进行,因此必须对包含有七号信令链路的E1予以高阻跨接侦听,这样才不会影响E1电路收发双方的信号。

七号信令话单采集系统的高阻跨接器件要求性能稳定,高阻跨接口相对于E1电路的阻抗都大于1000Ω。在正常工作时,跨接后对原E1信号的影响小于0.3dB,从而有效地确保了交换局工作的安全性。高阻跨接器件与后面的信号放大器件配合,使得流经高阻跨接器件的弱E1信号可以在经过30~50m传输后,依然不产生任何额外的误码。本系统的高阻跨接器件还提供双跨接的形式,即可以在一个跨接点上获得两份高阻E1信号,同时供给其后的两套热备份系统使用。

图3

2.2 数字交换连接设备

E1电路经高阻跨接侦听后,其信号强度已经大大减弱,为使信号可以被正常接收,就必须将信号放大,七号信令话单采集系统的数字交叉连接设备将上述两种功能整合在一起,其主要的信号流程如图2所示。

数字交叉连接设备所处理的功能详述如下:

(1)软件配置的E1信号放大比例:提供0~20dB的信号放大能力,使其能够与大到3500Ω的高阻跨接器件的配合,并且放大的比例可以由配置软件修改。

(2)软件配置的E1阻抗匹配:该设备可以通过配置软件,按需要选择75Ω或120Ω的'阻抗,与接入的E1相匹配。

(3)低延时的无阻塞交换网络:数字交换连接设备可以实现256×256的无阻塞交换,即能将8条输入E1的任何一个时隙小于12μs,在最坏的情况下也小于125μs。数字交换连接设备中时隙的连接方式可以由软件配置。

(4)主时钟的选择:通过软件配置,该设备可在8个E1中选择其中的一个作为主时钟。当用户选择的主时钟E1失效时,系统会自动选择另一个有效的E1作为设备的主时钟源,而一旦用户选择的主时钟E1恢复时系统将把主时钟源切换回来。时钟源的切换时延小于1ms。

七号信令链路的跨接点可能分布在各个机房,而每个机房中只有少量的几条七号信令链路,因此通常在每个机房中只会使用到较小容量的交换网络。大的机房可能有很多条七号信令链路,这时只需简单地将多台数字交叉连接设备组成一个二级的交换网络即能满足要求。例如图3中用5台数字交叉连接设备组成的二级交换网络,将分布在36根E1中的18条七号信令链路收敛到两条E1中。

2.3 七号信令分析系统

七号信令分析系统主要完成31条七号信令链路消息的采集功能。

它根据用户定义的筛选条件过滤掉与计费无关的七号信令消息,并为每一条满足过滤条件的七号信令消息打上时标,最后将这些消息打成TCP/IP包,通过10M以太网传给详细话音生成软件。该系统在硬件上分为:七号信令分析设备和GPS授时系统。限于篇幅的原因,这里不详细介绍其技术实现。其主要的信号流程如图4所示。

3 系统性能测试

系统在信息产业部电信传输研究所RTNET实验室测试中,利用一台七号信令大话务量呼叫模拟器A模拟一个发端交换局,连接到中兴程控交换机,再汇接到另一台一号信令大话务量呼叫模拟量呼叫模拟器B模拟一个收端交换局。发端局和汇接局间有4对E1中继,每对E1中有30条话路,第一对E1中有1条七号信令链路,因此两个局之间共有1条七号信令链路和120条话路。大话务量模拟器A作为发话方,在每个话路上按所设时长产生一次呼叫,并记录成功的呼叫次数。被测试系统高阻跨接在发端局和汇接局之间的第一条E1上,经过数字交叉连接设备的输出接口采集七号信令消息,以TCP/IP数据包的形式,通过10M以太网传送到详细话单生成服务器生成详细话单,与呼叫模拟器统计的话单进行比对,检查被测系统生成话单的准确性。

为了衡量其处理31条七号信令链路能力,检查“七号”信令分析系统”在单位时间内可以处理的七号信令消息的数量,并保证系统在高信令负荷下不会遗漏七号信令消息。需要在七号信令消息分析模块上接入31条七号信令链路,并逐步增加这些七号信令链路上的负荷,达到呼叫模拟器最大呼叫数量。该项测试采用了如下等效的方法,利用“数字交叉连接设备”将一个输入时隙同时交换到多个不同的输出时隙的功能,可以将上述的1条七号信令链路的消息复制31份,从而在31条链路上产生朵的信令负荷,输入到七号信令消息分析模块进行消息处理。

由于七号信令话单采集系统采用监测七号信令链路的工作方式,必须保证不影响局间信令链路的前提下跨接,因此要对高阻跨接设备的物理特性进行测试,检查其是否对原链路引入误码,同时是否对本身引入误码。

随着电信行业的进一步改革以及中国加入WTO,电信行业间的网间结算成为各电信企业倍加重视的问题。该系统鉴于目前网间结算的话单采集存在着实时性差、采集点分散、过分依赖于交换机提供的接口、可靠性差以及结算欠准确等

不足,设计的一套大容量话单采集系统――七号信令话单采集系统(GSS07)。采用一种崭新的话单采集方式,具有技术先进、实时性高、容量大、安全性好、运行稳定等特点,实验证明其有效地解决了局间话单采集问题,非常适合电信企业的需要,可以被广泛应用于网间结算、长途结算、话务分析以及核帐对单系统。

篇2:一种基于七号信令的局间话单采集系统研究与应用

一种基于七号信令的局间话单采集系统研究与应用

摘要:鉴于目前网间结算的话单采集存在着实时性差、采集点分散、过分依赖交换机提供的接口以及结算欠准确等特点,介绍了一种基于七号信令系统的新式局间话单采集系统。该系统采用高阻跨接在信令链路上,实时采集链路上的消息,经过分析处理后提供给计费系统结算。具有技术先进、实时性高、容量大、可靠性高、运行稳定等特点,有效地解决了局部话单采集问题。

关键词:七号信令 话单采集 信号链路 局间

目前,电信部门与需要进行结算的通信企业通过优化网络结构、设置网关局的方式进行对等数据采集并进行结算。这种传统的数据采集方式主要依靠交换机本身数据端口,通过磁带方式或X.25口,采用CMIS/FTAM协议的模式进行话单数据采集。这种方式有一定的优势,但同时也存在着一些缺点:如实时性差、采集点分散、可靠性差等,同时在实际的互连互通实现方式中,各电信运营商通常会在话务量大的局间增设一定量的直联备份电路,以起到提高安全性和话务分流的目的。由于这部分直联电路是不经过网关局汇接的,如果只从网关局上取话单,将把这部分话单漏掉,从而造成结算的不准确。

目前网关互联互通,最常用也是最标准的信令方式就是中国七号信令方式,交换局间所有呼叫的控制信息均可通过七号信令的方式传输。因为七号信令消息中包含了生成详细话单所需的全部信息,只须从七号信令网上提取出信令消息,经过合理的筛选和配对,便可得到交换局间通信的所有详细话单。

1 基于七号信令网关采集模式

七号信令网是电话网、智能网以及各种新业务的神经和支撑网,是通信网建设维护的重要部分。根据我国七号信令技术体制要求,我国七号信令网最终采用三级准直联结构方式。SS7是公共信道信令协议,主要用于电话网内的呼叫处理,它使用电话网的基本数据通信协议,完成呼叫建立、呼叫选路并提供各种业务,由于SS7网是独立于话音/媒体流电路网的.数据网,可以做到完全的冗余备份。因此,SS7对电话网络的管理比以前的技术更快、更可靠和更先进。

本系统直接从SS7信令链路上获取话务信令并匹配成相对应的呼叫记录(CDR)。CDR匹配完成后将被传关室本地的采集比对服务器指定目录,从交换机联机方式或者脱机方式采集来的数据也被传送到本地的采集服务器。在采集服务器中,两个源数据将进行比对,产生比对的报表,生成比对结果供维护管理人员维护交换机。同时,从信令链路上采集的数据将作为一种数据源备份留在本地,在这种模式下,由于系统是一个备用系统,整个采集过程不考虑完全备份模式。本地的采集服务器运行比对软件,主要进行数据核查、过滤、预处理等任务。在与交换机采集的数据进行比对校验并生成校验报告后,交换机采集的数据送往结算中心。在此模式下,比对服务器中将保存2个月以上的信令话单,以备今后需要。

2 七号信令话单采集系统结构设计

七号信令话单采集系统为模块化结构的分布式系统。整个系统可公分为:E1电路的高阻跨接、数字交叉连接设备、七号信令分析系统和详细话单生成软件四部分。

[1] [2] [3] [4]

篇3:浅谈七号信令监测系统的应用

浅谈七号信令监测系统的应用

七号信令监测系统为目前复杂的信令网络维护提供了一组非常友好、人性化的'功能界面,具有很强的实用性、可操作性,是确保七号信令支撑网安全运行的重要工具.在与其他运营商的互联互通监测时,也表现出强大的信令监测和数据存储功能.

作 者:马妍  作者单位:铁通洛阳分公司,河南洛阳,471002 刊 名:科技风 英文刊名:TECHNOLOGY WIND 年,卷(期): “”(17) 分类号:X8 关键词:七号信令   信令监测   实时监测   规范   呼叫业务   分析  

篇4:MPC860在七号信令网关中的应用

MPC860在七号信令网关中的应用

摘要:介绍了PowerPCMPC860的内部结构、主要功能和性能特性,描述了它在七号信令网关中的应用,突出了其良好的性能及在七号信令网关中的重要地位。

关键词:PowerPCMPC860通信处理模块七号信令

1MPC860介绍

PMC860是MotorolaPowerPC系列CPU芯片主导产品,是互联网络和数据通信及控制领域使用较多、性能相当优越的嵌入式微处理器,内部集成了微处理器和一些通信领域的常用外围设备控制组件。MPC860相对先前的68K系列,性能和功能都有了大幅提高,CPU处理速度更快,通信处理能力强大。

MPC860结构框图如图1所示。

由图1可以看出,MPC860主要可分为三部分:PowerPC处理器核、系统接口单元(SIU)和通信处理模块(CPM)。

嵌入式PowerPC内核是主要的核心处理机单元,采用USIA(UserInstructionSetArchitecture)结构和全静态设计,拥有整形单元IU(IntegerUnit)和加载/存储单元LSU(Load/StoreUnit),支持32位内/外部总线接口。它包括4KB数据和指令高速缓存;集成有存储管理单元MMU;在50MHz时钟输入时拥有66MIPS的指令处理速度。

系统接口单元主要包括存储控制、总线监视、中断控制、软件看门狗、实时时钟、复位控制、总线仲裁和JTAC调试等功能模块。在32位系统总线下存储控制器支持动态数据总线宽度,可以分别支持8、16和32位外设或存储设备。

通信处理机模块主要包括RISC处理器、四个串行通信控制器(SCC)、两个串行管理控制器(SMC)、一个串行外围接口电路(SPI)、一个I2C(Inter-IntegratedCircuit)接口、5KB双端口RAM、三个并行I/O端口、四个独立的波特率发生器以及16位支持SCC、SMC、SPI和I2C的串行DMA通道。SCC可支持以太网、HDLC/SDLC、HDLC总线、AppleTalk、7号信令系统、UART、BISYNC、透明传输、支持PPP的异步HDLC等标准协议;SMC则可支持UART和透明传输等模式。CPM在几个不同的通信组件如SCC和SMC上可以同时收发数据,所有的通信组件可以独立地工作。SCC和SMC的物理接口由串行接口SI(SerialInterface)实现,SI允许SCC和SMC有两种外部连接方式:时分复用(TDM)接口引脚和非时分复用串行接口(NMSI)时的专用引脚。时分复用接口由MPC860的TDM引脚和时隙分配器(TSA)实现。MPC860提供两个TDM接口(TDMa、TDMb),用户可以通过编程TSA来实现TDM和SCC、SMC之间的数据路由。每个通信设备都有独立的DMA控制器,32位RISC控制这16个串行DMA在通信设备与双端口RAM或外部SDRAM之间传送数据。接收数据时,串行DMA从通信设备接收数据并将数据存入双端口RAM或外部SDRAM中;发送时顺序相反,串行DMA从双端口RAM或外部SDRAM中读取数据,由通信设备完成数据的发送。

MPC860采用双处理器结构,内部集成PowerPCProcessor和CPMRISCProcessor。PowerPC执行高层代码,完成对外设的配置;RISC用来处理通信控制中的底层通信任务。两个处理器通过内部的5KB双端口RAM相互配合工作。在该存储区,每个处理器都可以根据运行情况独立设置控制位、读取状态位。由于CPM分担了嵌入式PowerPC的外围工作任务,减少了PowerPC对底层通信任务的干预,因而提高了PowerPC的工作效率。

由于通信处理模块中各通信控制器支持多种网络协议再加上PowerPC较快的处理速度,MPC860在许多领域得到了大量的应用,尤其适用于宽带接入设备如路由器、接入集线器、LAN/WAN交换机、PBX系统和STM网关等设计。

2七层信令系统

七号信令系统是数字通信网中采用最多的公共信道信号技术,它由消息传递部分(MTP)和用户部分(UP)组成。消息传递部分又可分为信令数据链路、信令链咱和信令网三部分,即通常所称的MTP1、MTP2和MTP3;用户部分则可分为电话用户部分(TUP)、数据用户部分(DUP)和ISDN用户部分(ISDN-UP)。其结构图如图2所示。

信令数据链路(MTP1)是指信令传递的物理介质,主要定义了信令数据链路的物理、电气和功能特性,规定与数据链路的连接方式,为信令链路提供信息载体。信令链路(MTP2)规定信令消息在信令数据链路上传递的功能和程序,与信令数据链路一起为两点间信令传递提供可靠的功能和程序,主要用来实现消息路由、消息识别、消息分配以及信令业务量管理、信令链路管理和信令路由

管理等功能。

随着七号信令的普及,七号信令的业务量不断增加,特别是在移动信令网上,原有64kbps信令链路已经不能完全适应业务量增长的需求,对2Mbps高速信令链路的需求日益迫切。在下面的设计中,同时提供了64kbps和2Mbps两种迫令链路,以满足不同业务的需求。

3七号信令处理子系统的实现

七号信令处理子系统是七号信令网关的一部分,主要用来实现MTP中一、二级功能,同时为二、三级提供可靠的数据通路。

3.1硬件组成

七号信令处理子系统的硬件主要由核心处理器MPC860、数据交换网络(DSN)、E1接口模块、内存SDRAM、引导FLASH和HDLC控制器组成,结构如图3所示。

E1接口模块选用集成有E1成帧器(FRAMER)和线路接口单元(LIU)的专用E1收发器。E1收发器直接挂接到MPC860PPC总线上,由MPC860配置。在接收方向,每4路E1复用为128通道的8.192MbpsH-MVIP(大容量多路复选综合协议)接口数据(与H-100兼容);发送方向相反,8.192MbpsH-MVIP分用出4路E1。线路接口单元完成数据的A/D和D/A转换,有B8ZS、HDB3和AMI三种数据编解码方法可供选择。

数据交换网络可以采用专用的多速率交换芯片实现。将多条E1链路的任意32或64时隙交换到MPC860的串行通道SCCn(n可以为1,2,3,4中的一个或多个)上。交换芯片的'配置也是由MPC860完成,根据交换配置的不同,可以实现64Kbps和2Mbps两种不同的信令链路。

与数据交换网络相连的串行通道SCCn和MPC860的QMC控制。QMC(QUICCMultichannelController)是QUICC多通道控制器的简称。每个SCC都可以工作在QMC模式下,独立支持64条信道,并且允许将64条信道任意映射到TDM中的64个时隙。QMC同时使用TSA的两个TDM(TDMa和TDMb),每条信道可以独立地配置成HDLC或透明传输(transparent)模式。

HDLC控制器为MTP2与MTP3通信提供可靠的物理链路,每个HDLC控制器可以提供多条HDLC链路。HDLC控制器由MPC860通过PCI桥配置,PCI桥则由专门的桥接芯片来实现。桥接芯片和MPC860通过PPC总线相连(称作Qbus),与HDLC控制器都挂接在PCI总线上。桥接芯片完成Qbus和PCI总线之间电路特性的转换、数据传递以及地址和存储空间的映射。

内存(SDRAM)用来存放用户数据和代码,为程序运行和保存临时文件提供空间。由于系统中有不同的总线主设备要用SDRAM存储数据和代码,各设备并不都能提供内部地址复用功能,所以SDRAM采用外部地址复用。可以根据实际需要采取不同大小的内存。上电引导Flash用来固化上电引导程序、操作系统内核以及用户应用程序。

为便于调试,系统提供RS232串口和10Mbps/100Mbps网口与计算机通信。串口使用MPC860的SMC1或SCM2,通过RS232收发器完成RS232电平转换。10Mbps和100Mbps网口可分别采用串行通信控制器SCC和快速以太网控制器FEC。通过这些调试口可以完成操作系统内核和应用程序的加载,对系统性能和运行状况进行实时监控。

另外系统还采用MPC860的BDM(BackgroundDebugMode)作为系统的调试端口,应用VisionCLICK或XRAY等调试软件对系统进行调试,完成操作系统内核的加载和固化等。

可编程逻辑模块CPLD主要用来实现:

(1)各模块间时序关系的调整;

(2)译码逻辑;

(3)系统运行状态的监测;

(4)为调试而设计的其他相关逻辑控制。

(5)CPLD的具体实现可以有多种选择,如Xilinx的Foundation、Maxplus等。

3.2软件实现

针对系统硬件设计,系统软件分成相应的几个模块,主要包括BSP、数据链路初始化和MTP2,如图4所示。

(1)BSP(BoardSupportPacket)为Vxworks操作系统内核提供基本硬件接口,完成上电后的硬件初始化,支持Vxworks与硬件驱动的通信。根据系统硬件的实际应用情况,制作生成BootROM映像和Vxworks映像。其中BootROM映像完成最小的系统初始化,同时为装载Vxworks映像提供环境。

(2)初始化模块包括了对E1接口、数据交换网络、HDLC控制模块和桥接芯片的初始化,使得各

模块处于激活或工作状态;

(3)MTP2一方面根据MTP3的编程功能,把要发送的信令消息发到信令数据链路上去,同时把接收的信令消息传送到MTP3;另一方面,还要在信令点终端内或两个终端之间传递信令链路状态信息及处理机状态信道,并根据这些信息采取一定的控制处理措施。MTP2可分为链路状态控制、起始定位控制、处理机故障控制、基本发送控制、基本接收控制、定位误差率监视、信号单元误差监视和拥塞控制等模块。

七号信令处理子系统为用户提供了64kbps和2Mbps两种信令链路,可以满足不同的业务需求。MPC860作为主控器件,很好地完成了对各子模块的配置和监控,其快捷的处理速度和强大的通信处理能力为系统提供了很好的实时性。

篇5:MPC860在七号信令网关中的应用

MPC860在七号信令网关中的应用

摘要:介绍了PowerPC MPC860的内部结构、主要功能和性能特性,描述了它在七号信令网关中的应用,突出了其良好的性能及在七号信令网关中的重要地位。

关键词:PowerPC MPC860 通信处理模块 七号信令

1 MPC860介绍

PMC860是Motorola PowerPC系列CPU芯片主导产品,是互联网络和数据通信及控制领域使用较多、性能相当优越的嵌入式微处理器,内部集成了微处理器和一些通信领域的常用外围设备控制组件。MPC860相对先前的68K系列,性能和功能都有了大幅提高,CPU处理速度更快,通信处理能力强大。

MPC860结构框图如图1所示。

由图1可以看出,MPC860主要可分为三部分:PowerPC处理器核、系统接口单元(SIU)和通信处理模块(CPM)。

嵌入式PowerPC内核是主要的`核心处理机单元,采用USIA(User Instruction Set Architecture)结构和全静态设计,拥有整形单元IU(Integer Unit)和加载/存储单元LSU(Load/Store Unit),支持32位内/外部总线接口。它包括4KB数据和指令高速缓存;集成有存储管理单元MMU;在50MHz时钟输入时拥有66MIPS的指令处理速度。

系统接口单元主要包括存储控制、总线监视、中断控制、软件看门狗、实时时钟、复位控制、总线仲裁和JTAC调试等功能模块。在32位系统总线下存储控制器支持动态数据总线宽度,可以分别支持8、16和32位外设或存储设备。

通信处理机模块主要包括RISC处理器、四个串行通信控制器(SCC)、两个串行管理控制器(SMC)、一个串行外围接口电路(SPI)、一个I2C(Inter-Integrated Circuit)接口、5KB双端口RAM、三个并行I/O端口、四个独立的波特率发生器以及16位支持SCC、SMC、SPI和I2C的串行DMA通道。SCC可支持以太网、HDLC/SDLC、HDLC总线、AppleTalk、7号信令系统、UART、BISYNC、透明传输、支持PPP的异步HDLC等标准协议;SMC则可支持UART和透明传输等模式。CPM在几个不同的通信组件如SCC和SMC上可以同时收发数据,所有的通信组件可以独立地工作。SCC和SMC的物理接口由串行接口SI(Serial Interface)实现,SI允许SCC和SMC有两种外部连接方式:时分复用(TDM)接口引脚和非时分复用串行接口(NMSI)时的专用引脚。时分复用接口由MPC860的TDM引脚和时隙分配器(TSA)实现。MPC860提供两个TDM接口(TDMa、TDMb),用户可以通过编程TSA来实现TDM和SCC、SMC之间的数据路由。每个通信设备都

[1] [2] [3] [4]

核心系统工程师多选题

如何面对专业和行业的矛盾?

下半年网络工程师填空题总结

运维述职报告

运维部述职报告

网络优化和运营商如电信、联通、移动优化区别?

移动网络在统计数据采集的应用论文

网络即时通信的原理和实现论文

汽车公司笔试题目简答题

搜索引擎优化技术原理及其实践论文

一种基于七号信令的局间话单采集系统研究与应用
《一种基于七号信令的局间话单采集系统研究与应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【一种基于七号信令的局间话单采集系统研究与应用(集锦5篇)】相关文章:

亚马逊、网络泡沫与网络分析师2023-04-17

通信工程实习报告的2023-12-22

监控中心个人工作总结2024-03-08

浅谈无线通信原理的论文2022-05-07

社会科学工作者面临的挑战和历史使命2023-08-08

通信维护员年度个人总结2023-10-10

通信施工年终工作总结2023-06-17

联通工作员工述职报告2022-10-05

网站建设实习报告与实习总结2022-05-07

网站营销实习报告2023-05-02

点击下载本文文档