高二物理力学知识点(精选5篇)由网友“无忧者无忧”投稿提供,下面是小编整理过的高二物理力学知识点,欢迎您能喜欢,也请多多分享。
篇1:高二物理力学知识点
(1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。
(2)条件:①接触;②形变。但物体的形变不能超过弹性限度。
(3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)
(4)大小:
①弹簧的弹力大小由F=kx计算,
②一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定.
力学知识点4、摩擦力:
(1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不可.
(2)摩擦力的方向:跟接触面相切,与相对运动或相对运动趋势方向相反.但注意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度.
2高中物理知识点总结:力学部分
力学的基本规律之:匀变速直线运动的基本规律(12个方程);
三力共点平衡的特点;
牛顿运动定律(牛顿第一、第二、第三定律);
力学的基本规律之:万有引力定律;
天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);
力学的基本规律之:动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);
动量守恒定律(四类守恒条件、方程、应用过程);
功能基本关系(功是能量转化的量度)
力学的基本规律之:重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);
功能原理(非重力做功与物体机械能变化之间的关系);
力学的基本规律之:机械能守恒定律(守恒条件、方程、应用步骤);
简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;
简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用。
篇2:高二物理关于力学的知识点总结和力学突破
物理四种自然作用力
第一节 强相互作用力的实质
强相互作用力乃是让强子们结合在一块的作用力,人们认为其作用机制乃是核子间相互交换介子而产生的。
而其实,强子们之间的相互作用实际上乃是夸克团体与夸克团体之间的相互作用,而夸克团体之间的相互作用则必然乃夸克与夸克之间相互作用的剩余。而夸克之间的相互作用我们已知它是未饱和游空子重合体之间相互作用的延伸,这才是真正的强相互作用之作用机制。
大约地说,当夸克们结合成为强子时,其结构已经较为严密完整,可是,如果强子之间发生了强烈的撞击作用,那么各强子原来的结构则定会遭到破坏,因此,各强子中的大小夸克们则自然会重新产生相互的作用而结合在一块;这,正就是强相互作用的现象。
而说到底,强相互作用的实质乃是由于未饱和游空子重合体之中心体因其综合循环体的未饱和而通过静空子中间体渗透出中心极性而与别的未饱和游空子重合体之外层循环体产生相互吸引,并且自身的循环体同理也受到对方中心体吸引,因而它们之间则产生了强烈的相互作用从而形成了各种层次的联合构成体,而强相互作用则乃是其中一个层次上的联合相互作用而已。
第二节 电磁相互作用力的实质
电磁相互作用力乃是带电荷粒子或具有磁矩粒子通过电磁场传递着相互之间的作用。
电场和磁场的实质我们在前面已经了解:电场乃是游空子循环体的循环变化在周围静空子的中间体中引起极性感应激荡并传递开去。而磁场则是电场因电源的运动而呈现出不同的状态而已。并且我们还知道,电场和磁场实际上也是一种电磁波,不过乃是频率及高的电磁波。
而电磁波能够对许多东西产生作用并使之发生结构状态的改变(如光照能使物体升温、无线电波能在导线中推动电子而形成电流等等),这是因为任何有质的东西皆由游空子所构成,而任何游空子皆处在静空子之中并与静空子共用中间体;于是,电磁波━━即静空子中间体的极性感应激荡自然会影响游空子从而或多或少地影响了游空子构成体的整体状态。所以,电磁作用的范围其实是很广的。
那么带电荷体与带电荷体之间的相互作用具体是怎样进行的呢?
电荷无非分为正负两种,我们先说异种电荷,即正负电荷之间的相互作用吧。
正负电荷乃是通过各自所产生的电场来进行相互作用的。那么首先请问:既然异种电荷是相互吸引的,可为什么却不常看到正负电荷直接接触进行相互作用并结合在一起呢?
正因为,据我们所知电荷的实质乃是物质基元游空子的循环体或游空子重合体外层的循环体在循环时对外表现出来的极性激荡。这激荡造成周围静空子中间体的极性感应激荡即是所谓的电场。而正负电荷的区别则不过是循环体循环方向的左右旋不同而已。那正负电荷的电场,则乃区别于极性激荡的相位刚好相反。总之,正负电荷皆起源于同一极性体(即游空子循环体),其区别只是极性体循环的方向相反而已。于是既然如此,当正负电荷直接接触时,实际上则是相同的极性体在接触;而相同的极性体是相互排斥的,因此正负电荷不能够靠在一起直接进行着相互间的吸引作用而只能通过电磁波来进行着彼此间的作用。
这个问题正好又从另一个角度来说明我们这理论之正确与完善。
那么,正负电荷应是如何通过电场来产生相互作用的呢?
由于,电荷所形成的电场实际上乃是电荷激发空间体而产生的那极高频电磁波,而发射电磁波的东西则必然会受到周围空间体(即静空子群)对它的反作用力,那发射极高频电磁波的电荷体所受的反作用力则当然会更加明显。只是,因为电荷体乃是向各个方位同时激发电磁波的,因此电荷体所受的各个方向的反作用力则相互抵消。
可是,当空间里同时有正负电荷时,虽然正负电荷所形成的电场之感应激荡相位相反,但由于在它们俩之间其激荡传播的方向亦相反,故其相位反而是相同的。于是,在它们之间的两端,正负电荷激荡周围每一个静空子时都得到对方传过来的激荡波的帮助,因此,在它们之间的这两边,静空子群对它们俩的反作用力自然会减少许多,于是两个带电荷体便会被自己另一边的较强的静空子反作用力推向对方而表现出异性电荷相吸引的特性。
而如果空间里同时放置的是同种的电荷,那么由于同种电荷所形成的电场之感应激荡的相位是相同的,但由于它们俩之间激荡的方向相反,故相位变成了相反,于是在它们之间的这边激荡静空子反而会受到额外的阻力,因此它们之间的这两端静空子对它们俩的反作用力则比双方另一边静空子对它们的反作用力更大,两个带电荷体便会被推斥开而表现出同种电荷相斥的特性来。
当然,空间里的电荷靠得越近,则各自激荡静空子时受到对方帮助或阻碍的程度则越强;反之,则越弱。
由于,磁场和电场只是外表形式上的不同而已,它们并没有什么本质上的区别。所以,磁性体与磁性体之间的相互作用原理与上述那电荷之间相互作用的原理是一个样的,而电荷在磁场中与磁场的相互作用,其原理在本质上也与上述的原理相同。因此,我们在这里便不需要去讨论那些细节性的问题了。
总之,电磁相互作用之实质乃是由于各带电体之电场的交叉作用而使空间基元静空子对带电体各个方位的电磁场激发产生不同的反作用,于是带电体各个方位在空间体不平衡的反作用力的作用下,产生了带有方向性的力的作用。
电磁相互作用力的实质我们已经清楚,接下来我们要谈的是弱相互作用力的问题。
第三节 弱相互作用力的实质
弱相互作用,主要表现在粒子的衰变过程。
弱相互作用的实质是什么呢?
我们论述过,在宇宙的大循环中,所有的物质基元“游空子”皆随着大循环的进程而缓慢地增加了内部循环的速度。而这速度的增加乃是因为游空子与所经过的一个个静空子产生相互作用的结果,于是,如果是单个独立的游空子,那么它所受到的静空子的作用力便会由于乃是1:1相互作用的关系而显得比较强;如果是重合游空子,则由于相互作用乃是一个静空子同时与多个游空子的相互作用,故其中的每一个游空子所受到的静空子的作用力便会比较弱,于是其内部循环速率的增加自然会更加缓慢。
总之,随着时间的推移,宇宙中所有游空子的内部循环都会缓慢地逐渐加快,而单个独立的游空子与重合游空子中的游空子则乃是其加快的速度有所不同而已;并且,游空子重合体所含的游空子数越多,则它里面的每一个游空子的内循环加速便越慢。
那么,这现象对于各种粒子的结构是否会造成影响呢?
因为各种粒子皆由游空子所构成,所以游空子内部循环的加速当然多少会影响各粒子的内部结构。可是,由于各粒子原本已有一套完整的内部循环系统,于是如果要让整个系统产生结构上的变化,那么游空子的内循环速度当然需要加速到一定的程度,所以,各粒子中那游空子内部缓慢的循环加速,并不能够在每一个时刻都使粒子产生结构上的变化。而如果要实现这结构上的变化,那当然得需要循环加速的不断积累。而这积累过程的长或短,当然取决于各粒子内部的结构情况(包括各游空子原有内部循环的快慢)。
我们知道,电子乃是饱和的游空子重合体,因此电子的内循环加速自然会非常的缓慢,而这,正是电子寿命很久远的根本原因。
当放射性物质之原子核内的各游空子之内部循环随着宇宙大循环的进程(也即是随着时间的推移)被加速到一定的程度时,本来就较不稳定的大原子核的结构(大家知道,原子核的增大是有着极限的,一般情况原子核越大则越不稳定)则容易受到一定的破坏,于是核内的一些游空子重合体便会脱离出来而合成新的小粒子跑了出去,并伴随着静空子的受激而产生γ射线,而那变故后的原子核则重新形成一个新的结构形式从而完成了一次衰变的过程。于是,由于放射作用的消耗,原子核中各游空子的内循环则会慢了下来,回到本来的状态并开始走向新的衰变过程。而这,正就是弱相互作用的实质。
归根结底,弱相互作用乃是物质基元“游空子”与众多的空间基元“静空子”因为经过不断的相互作用而导致游空子内部循环加速到一定的程度而最后导致物质结构的变化。也正因为如此,所以粒子的衰变只取决于时间的进程而与其他的种.种因素(如化学作用和物理作用)统统无关。
好,接下来我们要谈的乃是万有引力之问题了。
第四节 万有引力的实质
万有引力,乃任何有质体(即有质量之物)之间的相互吸引力。那么,这力是如何产生的?其实质又是什么呢?
对于较小的粒子来说,万有引力作用并不明显;但对于较大的物体,其作用则是很明显的。我们这世界上的所谓重量,便源于万有引力。
现在,就让我们用已经知晓的物质与时空的知识去认识万有引力的实质吧。
我们已经知道,宇宙中所有的物质皆由游空子或游空子重合体所构成;而所有的游空子及游空子重合体,在其循环体之中那极性最弱之处,其中心体的负空体极性则会很容易地渗透了出来。并且,随着循环体的循环变化,这渗透出来的中心体极性在每一个方位上则会产生相应的强弱变化;于是周围的静空子中间体便会受此影响而产生出了极性感应激荡。结果,这静空子的感应极性激荡则一个传感一个地传播开去,形成了感应极性激荡之“场”,这“场”不过是一份份空间基元的感应极性激荡罢了。
这就是说:任何物质,其四周围的空间都会产生中心体极性之感应激荡。虽然,这由渗透出来的极性所引起的激荡较弱,但如果质量增大,则由于叠加效应,便会有所加强。
由于静空子中间体的极性感应激荡实际上只能是感应正空体在起主导的作用,因而与感应源起相互作用的则只能是静空子中间体中的感应正空体;因此,游空子循环体(属于正空体极性)与被感应的静空子的相互作用则乃是相排斥的作用(符合了电磁作用之原理),而游空子中心体(属于负空体极性)与被感应的静空子的相互作用则应该是相互吸引的。于是,当有质体与有质体处在空间里的时候,不管它们是否为带电体(非带电体乃有质体自身循环体所激发的两种电场相互抵消,故循环体没有与空间产生相互作用力),它们周围那中心体极性渗透而形成的感应激荡则皆存在着;而在它们之间,由于双方那感应激荡的方向相反,因而感应激荡起来更加困难,因此在它们之间双方受到的被感应静空子的反作用力更大,而这反作用力由于乃是吸引的,所以双方则呈现相互吸引的现象━━这正是万有引力作用之实质及过程。
如果撇开感应激荡源与空间体的作用机制,我们可以看到,构成万有引力场的这中心体极性感应激荡与构成电荷之电场的循环体极性感应激荡并没有本质的不同。由于,形成万有引力场的中心体极性乃是以吸引的方式开始感应静空子之中间体的,而形成负电荷之电场的循环体则乃是以排斥的方式开始感应静空子之中间体的;因而两者所形成的极性感应激荡之相位则刚好相反。而我们在前面已知,正负电荷之电场的区别乃是其极性感应之相位的相反而已;因此,从激荡波的本身来看,万有引力之场等同于非常微弱的正电荷之电场。
人们应记得,牛顿之万有引力计算公式与库仑之电荷相互作用力计算公式是何其的相象,其中的缘故,正乃上述之道理。
至于万有引力与有质体之质量及距离的关系,则比较容易理解:质量大,则有质体之中心体的数量多,于是静空子之极性感应激荡由于叠加的效应则越强,于是万有引力作用越强烈;而有质体之间的距离加大了,则由于感应极性激荡随着向外的传递因会受到静空子之循环体及中心体等的干扰而将逐渐地变弱,因此两物之万有引力的作用则会随之而变弱。
终于,宇宙中最基本的四种自然力的作用本质我们都已清楚。于是,我们现在便可以对它们进行概括和统一了。
第五节 四种自然作用力的统一
总之,自然界的四种基本相互作用力,皆源于物质基元游空子与空间基元静空子之间或物质基元与物质基元再加上空间基元三者之间的相互作用。而它们之间的所有的相互作用,说到底乃是两种空间状态“正空体”与“负空体”的相互作用。而这两种“密度”不同、相对于中间态呈对偶正负极性的空间体之相互作用,则最终来源于宇宙的最根本的规则:即━━平衡趋势。而正是这 “平衡趋势”,导致了正负空体的极性吸引;而正空体与正空体、负空体与负空体之间的相互排斥,则乃是因为逆“平衡趋势”所导致。因此,最后我们可以得出结论:自然界的强相互作用力、电磁相互作用力、弱相互作用力、万有引力,全皆起源于“平衡趋势”之作用及逆“平衡趋势”之作用。宇宙正是在“平衡趋势”与逆 “平衡趋势”的双重作用下,不断地进行着循环变化的过程。所以,她是永恒的、并且是美丽的。
宇宙的四种自然作用力在这里终于得到了终极高度的统一。就这一结果,却已是多少物理学家多年来的梦想。
电磁相互作用(electromagnetic interaction)
自然界的四种基本相互作用之一,是带电粒子与电磁场的相互作用以及带电粒子之间通过电磁场传递的相互作用。在强度上它次于强相互作用而居于四种相互作用的第二位。在四种相互作用中,人们对电磁相互作用的基本规律最为了解。电磁相互作用和引力相互作用是长程力,它们可以在宏观尺度的距离中起作用而表现为宏观现象。宏观的电磁相互作用理论总结在麦克斯韦方程组中,早在19世纪已为人们所掌握。微观的电磁作用理论是量子电动力学,它是麦克斯韦理论与量子力学原理的结合。在量子电动力学中电磁场是量子化的光子场。光子的质量为零,能量为hv,v是频率。带电粒子可以发射和吸收光子,它们之间的电磁作用通过光子场传递。正反带电粒子对可以湮没而转化为光子,它们也可以在电磁场中产生。量子电动力学是经受了实验考验的成熟的理论。在这个理论中出现一个可以代表电磁相互作用强度的无量纲的量,这里e是电子电荷,с是光速。α称为精细结构常数,它的值约为1/137,是一个很小的量。在量子电动力学中各种物理量可以按α的幂次作微扰论展开,因此可以作精确的计算。量子电动力学的计算结果与一些高度精确的低能实验(见兰姆移位、μ子和电子回磁比有惊人的符合,它也与电子、正电子碰撞等高能量的实验符合。这些结果证明量子电动力学的理论至少在距离大于10-16cm处是正确的。
篇3:高二物理机械能知识点与力学复习
物理力学复习中应注意的问题
一.力学的建立
力学的演变以追溯到久远的年代,而物理学的其它分支,直到近几个世纪才有了较大的发展,究其原因,是人们对客观事物的认识规律所决定的。在日常生活和生产劳动中,首先接触最多的是宏观物体的运动,其中最简单.最基本的运动是物体位置的变化,这种运动称之为机械运动。由此我们注意到,力学建立的原动力就是源于人们对机械运动的研究,亦即力学的研究对象就是机械运动的客观规律及其应用。了解了这些,可以对力学的主脉络有了一条清晰的线索,就是对于物体运动规律的研究。首先要涉及到物体在空间的位置变化和时间的关系,继而阐述张力之间的关系,然后从运动和力出发,推广并建成完整的力学理论。正是要达到上述目的,我们在研究过程中,就需要不断地引入新的物理概念和方法,此间,由“物”及“理”的思维过程和严密的逻辑揄体系,逐步得以完善和体现。明确了以上观点,可以使我们在学习及复习过程,不会生硬地接受.机械地照搬,而是自然流畅地水到渠成。
让我们走入力学的大门看一看,它的殿堂是怎样的金碧辉煌。静力学研究了物体最简单的状态:简单的状态:静止或匀速直线运动。并且阐述了解决力学问题最基本的方法,如受力情况的分析以及处理方式;力的合成.力的分解和正交分解法。应当认识到,这些方法是贯穿于整个力学的,是我们研究机械运动规律的不可缺少的手段。运动学的主要任务是研究物体的运动,但并不涉及其运动的原因。牛顿运动定律的建立为研究力与运动的关系奠定了雄厚的基础,即动力学。至此,从理论上讲各种运动都可以解决。然而,物体的运动毕竟有复杂的问题出现,诸如碰撞.打击以及变力作用等等,这类问题根本无法求解。力学大厦的建设者们,从新的角度对物体的运动规律做了全面的.深入的讨论,揭示了力与运动之间新的关系。如力对空间的积累-功,力对时间的积累-冲量,进而获得了解决力学问题的另外两个途径-功能关系和动量关系,它们与牛顿运动定律一起,在力学中形成三足鼎立之势。
二.力学概念的引入
前面曾经提到过,力学的研究对象是机械运动的客观规律及其应用。为达此目的,我们需要不断地引入许多概念。以运动学部分为例,体会一下力学概念引入的动机及方法,这对力学的复习无疑是大有裨益的。
让我们研究一下行驶在平直公路上的汽车。首先一个问题就是,怎样确定汽车在不同时刻的位置。为了能精确地确定汽车的位置,我们可将汽车看作一个点,这样,质点的概念随之引入。同时,参照物的引入则是水到渠成的,即在参照物上建立一个直线坐标,用一个带有正负号的数值,即可能精确描述汽车的位置。而后由于汽车位置要不断地发生变化,位置的改变-位移亦被引入,至于速度的引入在此就不再赘述。在学习物理的过程中,这类问题可以说比比皆是。因此,只有搞清引入某一概念的真正意图,才能对要研究的问题有深入的了解,才能说真正地掌握了一个物理概念。而在物理中,引入概念的方法,充分体现了物理学的研究手段,例如:用比值定义物理量。该方法在整个物理学中具有很典型的意义。
把握一个概念的来龙去脉和准确定义显然是非常重要的,可以避免一些相似概念的混淆。如功与冲量.动能与动量.加速度与速度等等。所谓学习物理要“概念清楚”,就是这个含意。
三.力学规律的运用
物理概念的有机组合,构成了美妙的物理定律。因此,清晰的概念是掌握一个定律的重要前提。如牛顿第二定律就是由力.质量及加速度三个量构成的。在力学中重要的定律定理有:牛顿一.二.三定律;机械能守恒定律;动量守恒定律;万有引力定律;动量定理和动能定理。掌握定律并非以记忆为标准,重要的是会在实际问题中加以运用。如牛顿第二定律,从形式上看来并不复杂,然而很多同学在解决连结体问题时,却总是把握不好这三个量对研究对象之间的“对应关系”。在此可举一例。水平光滑轨道上有一小车,受一恒定水平拉力作用,若在小车上固定一个物体时,小车的加速度要减小是何原因?常见的答案显然是:合外力不变,质量变大。然而,若回答合外力变小,是不是正确的呢?这里显然是由于研究对象的选择不同而造成的不同结果。在此,研究对象的确定和公式各量的对应性问题,起着关键的作用,这也恰恰是牛顿第二定律应用时的重要环节。
运动学规律及动力学关系在解决问题时,也有许多应当注意和思考的地方。如在匀速圆周运动中,我们似乎并未明确指出哪些公式属于运动学关系,哪些属于动力学关系,但在实际问题中却可使人困惑。例如:在一光滑水平面上用绳拴一小球做匀速圆周运动,由公式v=2nr/T可以知道,若增大速率V可以减小周期T。然而卫星绕地球做匀速圆周运动时,我们却不能用增大V的方式来改变周期T,若仅在V=2nr/Th大做文章定会百思不得其解。究其原因,还是由于忽略了动力学原因,即前者与后者的最大区别是向心力来源不同。一个是绳子弹力,它可以以r不变时,任意提供了不同大小的拉力;而另一个是万有引力,当r一定时,其大小也就一定了。在这类问题上,最容易犯的就是片面性的错误。再比如机械能守恒和动量守恒这两条重要的力学定律,我们是否了解了守恒的条件,就可以做到灵活地运用呢?我们知道,机械能守恒的条件是“只有重力做功”,有些人看到某个问题中,重力没有做功,就立刻得出机械能不守恒的结论,如光滑水平面上的匀速直线运动。造成这类错误的原因是,只注意到了物理定律的文字表述,孰不知深刻理解其才是最重要的。如动量守恒定律的,是在满足了守恒条件的情况下,即系统不受外力或外力合力为零,动量只是在系统内部传递,而总动量不变。
最后谈谈动能定理和动量定理。观察其形式可以发现,每个定理都涉及两个状态量和一个过程量,注意到这一点应是定理正确应用的关键。我们不妨将状态看作一个点,过程看作一条线,在应用时必然是“两点夹一线”,即状态量及过程量,一定要对应,这也是两个定理的相似之处,至于它们的区别,在此就不多讲了。
由以上的讨论可以看出,对物理定律的应用,绝不能只满足于会用,而应当多方面地体会其深层的含意和适用条件中所包含的物理意义。只有这样,才能达到灵活运用物理规律解题的目的,做到居高临下,以不变应万变。
四.逻辑推理在物理中的运用
逻辑推理在力学中可以说俯拾皆是。严密的逻辑推理,是正确运用物理规律解决问题的必由之路。试举一例:做曲线运动的物体一定受合外力,其逻辑推理过程如下:曲线运动的速度方向沿轨迹的切线方向,而曲线切线方向每点是不同的,因此曲线运动的速度方向一定是不断变化的。由于的矢量,所以曲线运动必为变速运动,必然有加速度,由牛顿第二定律可知其必受合外力。当然,实际问题中似乎并非如此繁琐,然而细细地想来又的如此,只是思维过程较为迅速罢了。再举一例:合外力对物体做功不为零,则物体的动量一定发生变化,而物体的动量变化,合外力对物体不一定做功。此命题依然可用逻辑推理说明其正确性。根据动能定理,当合外力做功时,则物体的动能必然发生变化,因此速率发生变化,则动量必然变化。反之支量发生变化,动能不一定变(动量是矢量,动能是标量),则合外力不一定做功。不难看出,清晰地认识概念,牢固地掌握规律,者严密正确的逻辑推理得以完成的重要前提和充足的条件补充。同学们若多留意.多用心,定会受益非浅。
解决力学问题,无非是解决物体的运动问题。既然如此,描述运动状态和改变运动状态之间就是力学手段应用的切入点。如描述运动状态的量有速度.动量和动能,而改变状态的原因又分别是力.冲量和功,构成以上关系的则分别是牛顿第二定律.动量定理和动能定理,而这些恰恰是质点动力学的主干。如此说来,我们的复习过程绝不是做题可以全部代替的,必须深入力学的各个领域,切实体会各部分的个性和共性,把握各量之.各规律间的内在联系,才能对整个“力学体系”有宏观地了解,更好.更有效.更迅速地解决各种力学问题。
比起轰轰烈烈的力学问题来,热学体系要显得平静和细腻。在此着重谈谈气体定律的应用问题。
众所周知,对一种事物,若要研究之,必先描述之,这在学习物理过程中,大家已深有体会。气体问题当然也不例外,状态参量的确定,便成了首当其冲的问题,温度.体积和压强诸参量中压强的确定显得尤为重要,这并非是压强有超乎一般参量的地位,而是由于压强计算的复杂性和它的变化多端,在复习中应引起足够的重视。
解决气体问题除了要熟练应用气体定律之外,方法的掌握也是至关重要的。常用的方法有极限法及假设法,下面简单谈谈这两种方法的运用。
例1.把装有气体的上端封闭玻璃管竖直插入水银槽内,管内水银面与槽内水银面的高度差为h。当玻璃管缓慢竖直向下插入一些,问h怎样变化?
例2.在一根一端封闭的均匀直玻璃管中,有一段5厘米长的水银柱,把质量为m的空气封闭在玻璃管中。当玻璃管水平放置时,管内空气柱的长度为14厘米,现缓慢地摇动玻璃管,让一定量的空气进入封闭在管内的空气柱中,最后,当玻璃管处在竖直位置且开中向下时,空气柱的长度为16厘米。设在整个过程中温度保持不变,大气压强为75厘米汞柱,求后来进入空气柱的空气质量。
分析:此类问题若采用玻-马定律且涉及质量问题,一定会有质量与体积的关系。而质量比等于体积比,则应在“同种.同质.同温”的三同条件下才是成立的。此时,可应用“假设法”,使一部分气体发生实际上并未发生的状态变化,从而找出上述关系,这就是在此题中应用假设法的初衷。哪下述过程:假设管中未进入气体且玻璃管开口向下,由玻-马定律知,气柱高度应为:P0l=Pl,l=75×14/70=15(cm),再假设此时气体进入玻璃管,则将占有1厘米,则有m‘/m=l’/l=1/15,所以有m‘=1/15m。此题亦可做其它假设,大家不妨一试。
假设法作为解决问题的方法,在解决气体问题时的确是行之有效的,应用的关键是要有丰富的想象力,且能紧紧把握住“状态”.“过程”及“研究对象”,我们知道气体三定律及一定质量理想气体状态方程是针对“一定质量”气体而言,若解决变质量问题时,研究对象的确定亦是不能忽视的。
最后再谈“力热综合”问题。此类问题的主干仍然应以力学规律为主,其间可以有气体压力出现,从方法上看,也依然是以力学方法作为主要方法,如隔离法.整体法等等。此间最感困惑之处应是气体压力是否进入力学方程,这完全由研究对象的选择而定。以88年的高考热学题为例:一加油圆筒形气缸静置于地面上气缸筒的质量为M,活塞连同手柄的质量为m,气缸内部的横截面积为S,大气压强为P,平衡时气缸的窖为V,现用手握着活塞手柄缓慢地向上提,设气缸足够长,在整个上提过程中气体温度保持不变,并不计气缸内气体的重力及活塞与气缸壁的摩擦,求将气缸刚提离地面时活塞上升的距离(图略)
分析:此题涉及三部分对象,气缸.活塞及气体,若以气体为研究对象,其应用规律显然是玻-马定律,两态一过程可以建立一个方程暂且不论,对活塞及气缸来说,两次平衡状态从整体到局部共可以建立六个平衡方程。这六个方程怎样建立及哪几个方程是有效方程,是解此题的关键点。第一平衡态:对气缸N+P0S=Mg①。对活塞P0S+mg=P1S②,对整体
N=(M+m)g③可见①③两式联立消去N后可得2式,因此,只建立第2式即可。第二平衡态:对气缸P0S=P2S+Mg④,对活塞P2S+F=mg+P0S,⑤对整体F=(M+m)g⑥,这三式中任取二式与第②式及玻-马定律P1V=P2(V+xS),组成4个方程组。即可解得
x=(mg+mg)V/(P0S—Mg)S。
由以上讨论可见,力热综合问题与力学问题的最大区别,就在于受力分析中可以出现气体压力,而联系力热规律必须依靠公式F=PS,这是力热综合的衔接点。
总之,力热综合问题并不神秘,也并非凌驾于力学和热学上,而是与一般综合问题一样,是二者有机地.巧妙地组合,但并不影响力学热学规律的使用,问题的关键仍然是基本概念.基本规律和基本方法的掌握。
篇4:高二物理力学学习心得
力学是一门相当古老的学科,在教科书上我们曾经在动力学伊始就学习过“历史的回顾”,由此可见编者的良苦用心。对力学的复习就由此谈起吧。
一.力学的建立
力学的演变以追溯到久远的年代,而物理学的其它分支,直到近几个世纪才有了较大的发展,究其原因,是人们对客观事物的认识规律所决定的。在日常生活和生产劳动中,首先接触最多的是宏观物体的运动,其中最简单.最基本的运动是物体位置的变化,这种运动称之为机械运动。由此我们注意到,力学建立的原动力就是源于人们对机械运动的研究,亦即力学的研究对象就是机械运动的客观规律及其应用。了解了这些,可以对力学的主脉络有了一条清晰的线索,就是对于物体运动规律的研究。首先要涉及到物体在空间的位置变化和时间的关系,继而阐述张力之间的关系,然后从运动和力出发,推广并建成完整的力学理论。正是要达到上述目的,我们在研究过程中,就需要不断地引入新的物理概念和方法,此间,由“物”及“理”的思维过程和严密的逻辑揄体系,逐步得以完善和体现。明确了以上观点,可以使我们在学习及复习过程,不会生硬地接受.机械地照搬,而是自然流畅地水到渠成。
让我们走入力学的大门看一看,它的殿堂是怎样的金碧辉煌。静力学研究了物体最简单的状态:简单的状态:静止或匀速直线运动。并且阐述了解决力学问题最基本的方法,如受力情况的分析以及处理方式;力的合成.力的分解和正交分解法。应当认识到,这些方法是贯穿于整个力学的,是我们研究机械运动规律的不可缺少的手段。运动学的'主要任务是研究物体的运动,但并不涉及其运动的原因。牛顿运动定律的建立为研究力与运动的关系奠定了雄厚的基础,即动力学。至此,从理论上讲各种运动都可以解决。然而,物体的运动毕竟有复杂的问题出现,诸如碰撞.打击以及变力作用等等,这类问题根本无法求解。力学大厦的建设者们,从新的角度对物体的运动规律做了全面的.深入的讨论,揭示了力与运动之间新的关系。如力对空间的积累-功,力对时间的积累-冲量,进而获得了解决力学问题的另外两个途径-功能关系和动量关系,它们与牛顿运动定律一起,在力学中形成三足鼎立之势。
二.力学概念的引入
前面曾经提到过,力学的研究对象是机械运动的客观规律及其应用。为达此目的,我们需要不断地引入许多概念。以运动学部分为例,体会一下力学概念引入的动机及方法,这对力学的复习无疑是大有裨益的。
让我们研究一下行驶在平直公路上的汽车。首先一个问题就是,怎样确定汽车在不同时刻的位置。为了能精确地确定汽车的位置,我们可将汽车看作一个点,这样,质点的概念随之引入。同时,参照物的引入则是水到渠成的,即在参照物上建立一个直线坐标,用一个带有正负号的数值,即可能精确描述汽车的位置。而后由于汽车位置要不断地发生变化,位置的改变-位移亦被引入,至于速度的引入在此就不再赘述。在学习物理的过程中,这类问题可以说比比皆是。因此,只有搞清引入某一概念的真正意图,才能对要研究的问题有深入的了解,才能说真正地掌握了一个物理概念。而在物理中,引入概念的方法,充分体现了物理学的研究手段,例如:用比值定义物理量。该方法在整个物理学中具有很典型的意义。
把握一个概念的来龙去脉和准确定义显然是非常重要的,可以避免一些相似概念的混淆。如功与冲量.动能与动量.加速度与速度等等。所谓学习物理要“概念清楚”,就是这个含意。
篇5:物理力学知识点小结
物理力学知识点小结
第八章力
一、力弹力
1、物体对物体的作用称为力。一个叫施力物体,一个叫受力物体。
2、形变的物体在撤去外力后能恢复原状,这种形变叫做弹性形变。使物体发生弹性形变的外力越大,物体的形变就越大。(在一定范围内,弹簧的伸长量与拉力成正比)。3、国际单位制中,力的单位是牛顿,符号位“N”。
弹簧测力计主要由弹簧、秤钩、指针和刻度盘组成。弹簧测力计的使用方法:
⑴了解弹簧测力计的量程,使用时所测力的大小应在量程范围内。⑵观察弹簧测力计的分度值。
⑶将弹簧测力计按测量时所需的位置放好,检查指针是否在“0”刻度线处,若不在,
应校正“0”点。
⑷测量时,要使弹簧测力计的受力方向沿着弹簧的轴线方向;观察时,视线必须与刻
度盘垂直。
二、重力力的示意图
1、由于地球的吸引而使物体受到的力叫做重力。物体所受重力的大小与它的质量成正比。物体所受的重力的方向是竖直向下的。
G表示物体所受的重力,m表示物体的质量,公式G=mg表示物体所受的重力与质量的关系。公式G=mg中,g表示物体所受的重力与质量之比,约等于9.8N/㎏,在粗略计算中,可取g=10N/㎏。
2、力的大小、方向和作用点称为力的三要素。对于物体所受的任何力都可以用这种方法来表示,这种表示力的图称为力的示意图。
三、摩擦力
1、摩擦:静摩擦、滑动摩擦、滚动摩擦。摩擦力:静摩擦力、滑动摩擦力。
2、一个物体在另一个物体表面上滑动时,会受到阻碍它运动的力,这种力叫做滑动摩擦力。滑动摩擦力的大小与接触面的粗糙程度、压力的大小有关,接触面越粗糙、压力越大,滑动摩擦力越大。在一定范围内,滑动摩擦力的大小与接触面积的大小无关。
3、减小物体接触面间的压力和粗糙程度、在接触面间加润滑剂或用滚动代替滑动等可
减小摩擦。
四、力的作用是相互的
一个物体对另一个物体有力的作用时,另一个物体也同时对这个物体有力的作用,即力的作用是相互的。
物理学习方法
学习物理的关键
物理规律是人们通过长期努力从生活实践中总结出来的重要结论,必须深入领会,加强理解,为了帮助记忆,我们通过口诀方式归纳如下:
1.弹簧秤原理:弹性限度是条件,伸长缩短很关键,变化包括两方面,外力可拉也可压。
2.惯性定律:不受外力是条件,保持匀直或静止,平衡效果合为零,相当没有受外力。
3.阿基米德原理:物体浸在液体中,要受浮力不密底,排开液体的重量,ρ液乘以gV排
4.功的原理:任何机械不省功,总功有用额外和,对物对功才有用,机械绳重摩擦额。
5.杠杆平衡条件:静止不动匀转动,力乘力臂积相等,支点受力画力线,作出力臂是关键。
6.反射定律:三线共面两角等,成像都是虚像的,物像镜面对称轴,镜面凹面均适用。
7.折射规律:两种媒质密不同,三线共面角不等,密度大中角度小,垂入射很特殊。
8.欧姆定律:同一导体同状态,电压电阻定电流,电阻导体本属性,材料长短粗细温。
9.焦耳定律:通电导体产生热,I平电阻乘时间,电能全部转热,纯阻两推经常用。
10.串联电路:串联电流路一条,电流大小处处等。总阻总压各部和,正比关系归电阻。
11.并联电路:并联电压处处等,干路电流支路和。总倒等于各倒和,反比关系归电阻。
12.安培定则:通电导体产生磁,电流方向定磁场。右手握螺旋管,四指电流拇指北。
13.滑动摩擦力:压力粗糙成正比,滑动大于滚动的,匀速直线或静止,根据平衡力来求。
14.大气压强:高度温度和湿度,睛夏高于阴和冬,海拔高度2千内,上升12下降1。
15.物体沉浮:浮力重力相比较,也可比较物液密。物小漂浮悬浮等,物大液密必下沉。
16.决定电阻大小因素:温度一定看材料,长度正比截面反,拉长压缩很特殊,四倍关系要分清。
17.决定蒸发快慢的因素:蒸发吸热要致冷,快慢因素三方面,温度高低接触面,空气流动摇扇子。
18.影响沸点的因素:沸腾沸点要吸热,沸点高低看气压,高山气低沸点低,高压锅内温度高。
19.晶体熔解:吸热升温倒熔点,熔解过程温不变。熔点温度物状态,固态液态或共存。
物理教学反思
本学期我担任初二学年的物理教学,这一学期以来,在学校领导的大力支持和领导下,在班主任老师和家长的配合和耐心帮助下,圆满地完成了教育教学工作任务,并取得了一定的成绩,现将这一学期在教学方面的体会和工作总结如下:
一、做好课前准备。深入细致的备好每一节课。在备课中,我认真研究教材,力求准确把握难重点,难点,制定符合学生认知规律的教学方法及教学形式,注意弱化难点,强调重点。
二、认真组织课堂教学。能组织好课堂教学,关注全体学生,注意信息反馈,调动学生的有意注意,使其保持相对稳定性。同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛。课堂语言简洁明了,课堂提问面向全体学生,注意激发学生学习的兴趣。课堂上讲练结合,布置好作业,作业尽量做到少而精,减轻学生的负担。
三、紧抓作业批改,注重后进生辅导。开学以来,我一直坚持作业的全批全改,这样才能对学生知识落实情况有更好掌握,随时调整教学,即有利于提高教学质量,还有利于做好后进生的辅导工作。对于每个班的后进生,坚持个别知识辅导和思想教育相结合的方式,与学生谈理想、谈目标,激发他们的学习热情。
四、积极参与教研活动。坚持听课、评课,注意吸取本学年组里老师及初三本学科老师的教学经验,努力探索适合自己的教学模式。本学期平均每周听课一到二节,对自己的教学促进很大。本学期还参加了县三中物理教研活动,从中我学习了怎样有效指导学生做好物理实验、怎样指导学生做好图片分析等,为下一步学习打下基础。
五、注重教育理论的学习。注意把一些先进的理论应用于课堂,做到学有所用。如到网络上学习新的知识,阅读教育教学杂志,不断扩宽知识面,为教学内容注入新鲜血液。学习新的教育教学方法和新的教学模式,注重培养多种兴趣爱好。
此外,教学中注意学科间的整合,让学生从不同角度,采用不同的途径获得知识,培养能力。
本学期我虽然尽了自己的责任和能力去完成了教学工作任务,也取得了一定的成绩,但在教学工作中仍然有缺陷。例如,课堂语言不够有激情等,但今后我将继续加倍地努力工作,为全面提高学生的物理成绩而加倍努力。
【高二物理力学知识点(精选5篇)】相关文章:
理科生的学习方法2022-11-02
第一学期高二物理教学计划2023-01-12
高二上学期物理教学计划2023-10-19
物理竞赛方案2022-09-27
高三教师教学计划2022-11-29
高二作文难吗2022-05-06
高三物理教学总结2023-04-14
我的高三教学反思2022-11-27
高三英语上学期教学计划2023-08-26
高三毕业班物理老师教学反思2023-01-26