高三物理基本粒子的教案

时间:2023-09-30 08:01:28 教案 收藏本文 下载本文

高三物理基本粒子的教案(精选14篇)由网友“sun-ny”投稿提供,这里小编给大家推荐一些高三物理基本粒子的教案,方便大家学习。

高三物理基本粒子的教案

篇1:高三物理基本粒子的教案

关于高三物理基本粒子的教案

第四节 “基本粒子”与恒星演化

4、宇宙的演化、恒星的演化

前面我们提到要了解宇宙起源需了解物质的组成的粒子,这是因为在物理学中研究微观世界的.粒子物理、量子理论,与研究宇宙的理论竟然相互沟通、相互支撑。

阅读教材(第105页“宇宙演化”)并要求学生初步了解宇宙演化的发展过程。

(1)宇宙演化过程和恒星演化过程

宇宙大爆炸后,“粒子家族”(宇宙形成之初):10-44秒后,温度1032,产生夸克、轻子、胶子等→

10-6秒后温度1013,夸克构成了质子和中子等(强子时代)→温度为1011时,少量夸克,光子、大量中微子和电子存在(轻子时代)→温度109时进入核合成时代→温度降到3000时,电子与质子复合成氢原子→冷却,出现了宇宙尘埃 密集尘埃→星云团 开始发光→一颗恒星诞生。

恒星收缩升温→热核反应成氦→氢大部分聚变为氦→收缩→氦聚合成碳→…(类似)直到产生铁元素。

恒星最后的归宿:

恒星质量小于太阳1.4倍→白矮星

恒星质量是太阳1.4~2倍→中子性

5、课堂练习(可选为例题)

练习1:目前普遍认为,质子和中子都由被称为μ夸克和d夸克的两类夸克组成,μ夸克带电量为2e/3,d夸克带电量为-e/3,e为元电荷,则下列论断可能的是( B )

A.质子由1个μ夸克和1个d夸克组成,中子由1个μ夸克和2个d夸克组成

B.质子由2个μ夸克和1个d夸克组成,中子由1个μ夸克和2个d夸克组成

C.质子由1个μ夸克和2个d夸克组成,中子由2个μ夸克和1个d夸克组成

D.质子由2个μ夸克和1个d夸克组成,中子由1个μ夸克和1个d夸克组成

练习2: 介子衰变方程为: →π-+π其中 介子和π-介子带负的基元电荷,π介子不带电,如图所示,一个 介子沿垂直于磁场的方向射入匀强磁场中,其轨迹为圆弧Ap,衰变后产生的π-介子的轨迹为圆弧pB,两轨迹在p点相切,它们半径R-与Rπ-之比为2:1(π介子的轨迹未画出)由此可知π-的动量大小与π的动量大小之比为( C)

A.1:1

B.1:2

C.1:3

D.1:6

篇2:高三物理复习教案参考

高三物理复习教案参考

一、误差和有效数字

1.误差

测量值与真实值的差异叫做误差。误差可分为系统误差和偶然误差两种。

(1)系统误差的特点是在多次重复同一实验时,误差总是同样地偏大或偏小。

(2)偶然误差总是有时偏大,有时偏小,并且偏大和偏小的机会相同。减小偶然误差的方法,可以多进行几次测量,求出几次测量的数值的平均值。这个平均值比某一次测得的数值更接近于真实值。

2.有效数字

带有一位不可靠数字的近似数字,叫做有效数字。

(1)有效数字是指近似数字而言。

(2)只能带有一位不可靠数字,不是位数越多越好。

注:凡是用测量仪器直接测量的结果,读数一般要求在读出仪器最小刻度所在位的数值(可靠数字)后,再向下估读一位(不可靠数字),这里不受有效数字位数的限制。间接测量的有效数字运算不作要求,运算结果一般可用2~3位有效数字表示。

二、考试大纲规定的学生实验

1.长度的测量(游标卡尺和螺旋测微器)

(1)游标卡尺

①10分度的游标卡尺。游标上相邻两个刻度间的距离为0.9mm,比主尺上相邻两个刻度间距离小0.1mm。读数时先从主尺上读出厘米数和毫米数,然后用游标读出0.1毫米位的数值:游标的第几条刻线跟主尺上某一条刻线对齐,0.1毫米位就读几(不能读某)。其读数准确到0.1mm。

②20分度的游标卡尺。游标上相邻两个刻度间的距离为0.95mm,比主尺上相邻两个刻度间距离小0.05mm。读数时先从主尺上读出厘米数和毫米数,然后用游标 读出毫米以下的数值:游标的`第几条刻线跟主尺上某一条刻线对齐,毫米以下的读数就是几乘0.05毫米。其读数准确到0.05mm。

③50分度的游标卡尺。游标上相邻两个刻度间的距离为0.98mm,比主尺上相邻两个刻度间距离小0.02mm。这种卡尺的刻度是特殊的,游标上的刻度值,就是毫米以下的读数。这种卡尺的读数可以准确到0.02mm。

注意:游标卡尺都是根据刻线对齐来读数的, 所以都不再往下一位估读。

要知道主要构造的名称:主尺、游标尺、外测量爪、内测量爪、深度尺、紧固螺钉。

(2)螺旋测微器

固定刻度上的最小刻度为0.5mm(在中线的上侧);可动刻度每旋转一圈前进(或后退)0.5mm。在可动刻度的一周上平均刻有50条刻线,所以相邻两条刻线间代表0.01mm。读数时,从固定刻度上读取整、半毫米数,然后从可动刻度上读取剩余部分(因为是10分度,所以在最小刻度后必须再估读一位),再把两部分读数相加,得测量值。

篇3:高三物理棱镜教案

高三物理棱镜教案

教学目标

知识目标

1、了解棱镜在改变光的传播方向上的作用,知道棱镜是利用光的折射定律控制光路的光学元件一.

2、理解全反射棱镜产生全反射的原理,知道全反射棱镜的应用.

3、知道各种色光在真空中的速度相同,在其他介质中速度不同,因而对同一介质的折射率不同.

4、知道色散现象产生的原因,知道红光的折射率最小,紫光的折射率最大.

能力目标 理解棱镜对光的偏折作用,对实际问题进行处理.理解不同色光通过棱镜的色散现象,分析相关现象.

情感目标

1、对比全反射棱镜和平面镜对光路的控制作用的不同效果,让学生学会选择更合理的工具来解决问题.

2、由光的色散现象这一知识点,启发学生思考不同的色光叠加的效果.

教学建议

1、要让学生会根据折射定律定性画出通过棱镜的光线、能够通过作图体会棱镜控制光法的特点:“光线向底而偏折”、要正确地、灵活地找到顶角和底面.

2、要让学生知道全反射棱镜控制光路的特点、并让学生了解全反射棱镜与平面饼在改变光路上效果是相同的,但利用平面镜反射时,玻璃表面和镀层表面都要产生反射,并在镀层面会有一定的光能被吸收、所以实际中全反射棱镜优于平面镜.

3、关于光的色散现象可以先通过演示实验,如让白光通过三棱镜在屏上或白墙上观察到彩色的光带而看到色散现象,再通过分析说明各种颜色的光偏向角不同反映了玻璃对各种色光的折射率不同,从而得出不同颜色的光在玻璃中的传播速度不同.

教学设计示例

棱镜

(-)引入新课

根据光的折射现象以及光的可逆性原理分析光线通过三棱镜后将发生偏折现象,并通过演示实验观察光路(利用激光演示器).做好演示实验:光通过三棱镜后的'光路(尽量演示各种可能出现的情况)

(二)教学过程

1、介绍三棱镜 棱镜:光学上用核截面为三角形的透明体叫做三棱镜,光密媒质的棱镜放在光疏媒质中(通常在空气中),入射到棱镜侧面的光线经棱镜折射后向棱镜底面偏折.

A、三棱镜是利用光的折射控制光路的光学元件.隔着三棱镜能看到物体的虚像.虚像的位置比物体的实际位置向顶角方向偏移,但是没有必要去追究是放大还是缩小的像.

B、光从棱镜的一个侧面射入,从另一个侧面射出,出射光线将向底面(第三个侧面)偏折,偏折角的大小与棱镜的折射率,棱镜的顶角和入射角有关.

C、若三棱镜的介质相对于周围介质是光流介质,则透过棱镜看物体,看到的虚像向底边偏移;出射光线较之入射光线向顶角偏折.

2、全反射棱镜 截面为等腰直角三角形的棱镜叫全反射棱镜.全反射棱镜在光学仪器中被用来改变光路.

A、玻璃的折射率在1、5~1、9之间,相对于空气来讲,玻璃的临界角在30°~42°之间.

B、光从空气垂直射入全反射棱镜的直角侧面上,经过棱镜一次全反射,将改变光路90°,光垂直射入全反射棱镜的斜侧面上,经棱镜两次全反射,将改变光路180°.

3、光的色散 白光通过三棱镜折射后被分解为由红,橙,黄,绿,蓝,靛,紫组成的彩色光谱,这就是光的色散.

A、光的色散现象表明:白光是由各种单色光组成的复色光;同一种介质对不同色光的折射率不同;不同色光在同一介质中传播的速度不同.

B、复色光通过平行透明板(玻璃砖),也能发生色散现象.

探究活动

1、利用三棱镜自制潜望镜.并与利用平面镜制作的潜望镜进行效果对比.

2、动手做一做光的色散实验,看看会有什么现象?

篇4:高三物理教案设计 恒定电流教案

高三物理教案设计 恒定电流教案

一、电流、电阻和电阻定律

1.电流:电荷的定向移动形成电流.

(1)形成电流的条件:内因是有自由移动的电荷,外因是导体两端有电势差.

(2)电流强度:通过导体横截面的电量Q与通过这些电量所用的时间t的比值。

①I=Q/t;假设导体单位体积内有n个电子,电子定向移动的速率为V,则I=neSv;假若导体单位长度有N个电子,则I=Nev.

②表示电流的强弱,是标量.但有方向,规定正电荷定向移动的方向为电流的方向.

③单位是:安、毫安、微安1A=103Ma=106A

2.电阻、电阻定律

(1)电阻:加在导体两端的电压与通过导体的电流强度的比值.R=U/I,导体的电阻是由导体本身的性质决定的,与U.I无关.

(2)电阻定律:导体的电阻R与它的长度L成正比,与它的横截面积S成反比. R=L/S

(3)电阻率:电阻率是反映材料导电性能的物理量,由材料决定,但受温度的影响.

①电阻率在数值上等于这种材料制成的长为1m,横截面积为1m2的柱形导体的'电阻.

②单位是:m.

3.半导体与超导体

(1)半导体的导电特性介于导体与绝缘体之间,电阻率约为10-5m ~106m

(2)半导体的应用:

①热敏电阻:能够将温度的变化转成电信号,测量这种电信号,就可以知道温度的变化.

②光敏电阻:光敏电阻在需要对光照有灵敏反应的自动控制设备中起到自动开关的作用.

③晶体二极管、晶体三极管、电容等电子元件可连成集成电路.

④半导体可制成半导体激光器、半导体太阳能电池等.

(3)超导体

①超导现象:某些物质在温度降到绝对零度附近时,电阻率突然降到几乎为零的现象.

②转变温度(TC):材料由正常状态转变为超导状态的温度

③应用:超导电磁铁、超导电机等

二、部分电路欧姆定律

1、导体中的电流I跟导体两端的电压成正比,跟它的电阻R成反比。 I=U/R

2、适用于金属导电体、电解液导体,不适用于空气导体和某些半导体器件.R2R1 R2

3、导体的伏安特性曲线:研究部分电路欧姆定律时,常画成I~U或U~I图象,对于线性元件伏安特性曲线是直线,对于非线性元件,伏安特性曲线是非线性的.

注意:①我们处理问题时,一般认为电阻为定值,不可由R=U/I认为电阻R随电压大而大,随电流大而小.

②I、U、R必须是对应关系.即I是过电阻的电流,U是电阻两端的电压.

三、电功、电功率

1.电功:电荷在电场中移动时,电场力做的功W=UIt,

电流做功的过程是电能转化为其它形式的能的过程.

2.电功率:电流做功的快慢,即电流通过一段电路电能转化成其它形式能对电流做功的总功率,P=UI

3.焦耳定律;电流通过一段只有电阻元件的电路时,在 t时间内的热量Q=I2Rt.

纯电阻电路中W=UIt=U2t/R=I2Rt,P=UI=U2/R=I2R

非纯电阻电路W=UIt,P=UI

4.电功率与热功率之间的关系

纯电阻电路中,电功率等于热功率,非纯电阻电路中,电功率只有一部分转化成热功率.

纯电阻电路:电路中只有电阻元件,如电熨斗、电炉子等.

非纯电阻电路:电机、电风扇、电解槽等,其特点是电能只有一部分转化成内能.

篇5:高三物理习题课教案怎么设计

名师导航

●重点与剖析

一、自由落体运动

1.定义:物体只在重力作用下从静止开始下落的运动.

思考:不同的物体,下落快慢是否相同?为什么物体在真空中下落的情况与在空气中下落的情况不同?

在空气中与在真空中的区别是,空气中存在着空气阻力.对于一些密度较小的物体,例如降落伞、羽毛、纸片等,在空气中下落时,受到的空气阻力影响较大;而一些密度较大的物体,如金属球等,下落时,空气阻力的影响就相对较小了.因此在空气中下落时,它们的快慢就不同了.

在真空中,所有的物体都只受到重力,同时由静止开始下落,都做自由落体运动,快慢相同.

2.不同物体的下落快慢与重力大小的关系

(1)有空气阻力时,由于空气阻力的影响,轻重不同的物体的下落快慢不同,往往是较重的物体下落得较快.

(2)若物体不受空气阻力作用,尽管不同的物体质量和形状不同,但它们下落的快慢相同.

3.自由落体运动的特点

篇6:高三物理习题课教案怎么设计

(1)v0=0

(2)加速度恒定(a=g).

4.自由落体运动的性质:初速度为零的匀加速直线运动.

二、自由落体加速度

1.自由落体加速度又叫重力加速度,通常用g来表示.

2.自由落体加速度的方向总是竖直向下.

3.在同一地点,一切物体的自由落体加速度都相同.

4.在不同地理位置处的自由落体加速度一般不同.

规律:赤道上物体的重力加速度最小,南(北)极处重力加速度最大;物体所处地理位置的纬度越大,重力加速度越大.

三、自由落体运动的运动规律

因为自由落体运动是初速度为0的匀加速直线运动,所以匀变速直线运动的基本公式及其推论都适用于自由落体运动.

1.速度公式:v=gt

2.位移公式:h= gt2

3.位移速度关系式:v2=2gh

4.平均速度公式: =

5.推论:Δh=gT2

●问题与探究

问题1 物体在真空中下落的情况与在空气中下落的情况相同吗?你有什么假设与猜想?

探究思路:物体在真空中下落时,只受重力作用,不再受到空气阻力,此时物体的加速度较大,整个下落过程运动加快.在空气中,物体不但受重力还受空气阻力,二者方向相反,此时物体加速度较小,整个下落过程较慢些.

问题2 自由落体是一种理想化模型,请你结合实例谈谈什么情况下,可以将物体下落的运动看成是自由落体运动.

探究思路:回顾第一章质点的概念,谈谈我们在处理物理问题时,根据研究问题的性质和需要,如何抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化,进一步理解这种重要的科学研究方法.

问题3 地球上的不同地点,物体做自由落体运动的加速度相同吗?

探究思路:地球上不同的地点,同一物体所受的重力不同,产生的重力加速度也就不同.一般来讲,越靠近两极,物体做自由落体运动的加速度就越大;离赤道越近,加速度就越小.

●典题与精析

例1 下列说法错误的是

A.从静止开始下落的物体一定做自由落体运动

B.若空气阻力不能忽略,则一定是重的物体下落得快

C.自由落体加速度的方向总是垂直向下

D.满足速度跟时间成正比的下落运动一定是自由落体运动

精析:此题主要考查自由落体运动概念的理解,自由落体运动是指物体只在重力作用下从静止开始下落的运动.选项A没有说明是什么样的物体,所受空气阻力能否忽略不得而知;选项C中自由落体加速度的方向应为竖直向下,初速度为零的匀加速直线运动的速度都与时间成正比,但不一定是自由落体运动.

答案:ABCD

例2 小明在大雨后,对自家屋顶滴下的水滴进行观察,发现基本上每滴水下落的时间为1.5 s,他由此估计出自家房子的大概高度和水滴落地前瞬间的速度.你知道小明是怎样估算的吗?

精析:粗略估计时,将水滴下落看成是自由落体,g取10 m/s2,由落体运动的规律可求得.

答案:设水滴落地时的速度为vt,房子高度为h,则:

vt=gt=10×1.5 m/s=15 m/s

h= gt2= ×10×1.52 m=11.25 m.

绿色通道:学习物理理论是为了指导实践,所以在学习中要注重理论联系实际.分析问题要从实际出发,各种因素是否对结果产生影响都应具体分析.

例3 一自由下落的物体最后1 s下落了25 m,则物体从多高处自由下落?(g取10 m/s2)

精析:本题中的物体做自由落体运动,加速度为g=10 N/kg,并且知道了物体最后1 s的位移为25 m,如果假设物体全程时间为t,全程的位移为s,该物体在前t-1 s的时间内位移就是s-25 m,由等式h= gt22和h-25= g(t-1)2就可解出h和t.

答案:设物体从h处下落,历经的时间为t.则有:

h= gt2 ①

h-25= g(t-1)2 ②

由①②解得:h=45 m,t=3 s

所以,物体从离地45 m高处落下.

绿色通道:把物体的自由落体过程分成两段,寻找等量关系,分别利用自由落体规律列方程,联立求解.

自主广场

●基础达标

1.在忽略空气阻力的情况下,让一轻一重的两石块从同一高度处同时自由下落,则

A.在落地前的任一时刻,两石块具有相同的速度、位移和加速度

B.重的石块下落得快、轻的石块下落得慢

C.两石块在下落过程中的平均速度相等

D.它们在第1 s、第2 s、第3 s内下落的高度之比为1∶3∶5

答案:ACD

2.甲、乙两球从同一高度处相隔1 s先后自由下落,则在下落过程中

A.两球速度差始终不变 B.两球速度差越来越大

C.两球距离始终不变 D.两球距离越来越大

答案:AD

3.物体从某一高度自由落下,到达地面时的速度与在一半高度时的速度之比是

A. ∶2 B. ∶1

C.2∶1 D.4∶1

答案:B

4.从同一高度处,先后释放两个重物,甲释放一段时间后,再释放乙,则以乙为参考系,甲的运动形式是

A.自由落体运动 B.匀加速直线运动a

C.匀加速直线运动a>g D.匀速直线运动

答案:D

5.A物体的质量是B物体质量的5倍,A从h高处,B从2h高处同时自由落下,在落地之前,以下说法正确的是

A.下落1 s末,它们的速度相同

B.各自下落1 m时,它们的速度相同

C.A的加速度大于B的加速度

D.下落过程中同一时刻,A的速度大于B的速度

答案:AB

6.从距离地面80 m的高空自由下落一个小球,若取g=10 m/s2,求小球落地前最后1 s内的位移.

答案:35 m

●综合发展

7.两个物体用长L=9.8 m的细绳连接在一起,从同一高度以1 s的时间差先后自由下落,当绳子拉紧时,第二个物体下落的时间是多长?

答案:0.5 s

8.一只小球自屋檐自由下落,在Δt=0.2 s内通过高度为Δh=2 m的窗口,求窗口的顶端距屋檐多高?(取g=10 m/s2)

答案:2.28 m

9.如图2-4-1所示,竖直悬挂一根长15 m的杆,在杆的下方距杆下端5 m处有一观察点A,当杆自由下落时,从杆的下端经过A点起,试求杆全部通过A点所需的时间.

(g取10 m/s2)

高三物理时间和位移习题课教案

教学目标

知识与技能

1.知道时间和时刻的区别和联系.

2.理解位移的概念,了解路程与位移的区别.

3.知道标量和矢量,知道位移是矢量,时间、时刻和路程是标量.

4.能用数轴或一维直线坐标表示时刻和时间、位置和位移.

5.知道时刻与位置、时间与位移的对应关系.

过程与方法

1.围绕问题进行充分的讨论与交流,联系实际引出时间、时刻、位移、路程等,要使学生学会将抽象问题形象化的处理方法.

2.会用坐标表示时刻与时间、位置和位移及相关方向

3.会用矢量表示和计算质点位移,用标量表示路程.

情感态度与价值观

1.通过时间位移的学习,要让学生了解生活与物理的关系,同时学会用科学的思维看待事实.

2.通过用物理量表示质点不同时刻的不同位置,不同时间内的不同位移(或路程)的体验,领略物理方法的奥妙,体会科学的力量.

3.养成良好的思考表述习惯和科学的价值观.

4.从知识是相互关联、相互补充的思想中,培养同学们建立事物是相互联系的唯物主义观点.

教学重难点

教学重点

1.时间和时刻的概念以及它们之间的区别和联系

2.位移的概念以及它与路程的区别.

教学难点

1.帮助学生正确认识生活中的时间与时刻.

2.理解位移的概念,会用有向线段表示位移.

教学工具

教学课件

教学过程

[引入新课]

师:上节课我们学习了描述运动的几个概念,大家想一下是哪几个概念?

生:质点、参考系、坐标系.

师:大家想一下,如果仅用这几个概念,能不能全面描述物体的运动情况?

生:不能.

师:那么要准确、全面地描述物体的运动,我们还需要用到哪些物理概念?

一部分学生可能预习过教材,大声回答,一部分学生可能忙着翻书去找.

师指导学生快速阅读教材第一段,并粗看这节课的黑体字标题,提出问题:要描述物体的机械运动,本节课还将从哪几个方面去描述?

生通过阅读、思考,对本节涉及的概念有个总体印象,知道这些概念都是为了进一步描述物体的运动而引入的,要研究物体的运动还要学好这些基本概念.

引言:宇宙万物都在时间和空间中存在和运动.我们每天按时上课、下课、用餐、休息。从幼儿园、小学、中学,经历一年又一年,我们在时间的长河里成长.对于时间这个名词,我们并不陌生,你能准确说出时间的含义吗?物体的任何机械运动都伴随着物体在空间中位置的改变,你们用什么来量度物体位置的改变呢?这就是我们今天要研究的课题--§1.2 时间和位移.

[新课教学]

一、时刻和时间间隔

[讨论与交流]

指导学生仔细阅读“时刻和时间间隔”一部分,然后用课件投影展示本校作息时间表.

师:同时提出问题;

1.结合教材,你能列举出哪些关于时间和时刻的说法?

2.观察教材第14页图1.2-1,如何用数轴表示时间?

学生在教师的指导下,自主阅读,积极思考,然后每四人一组展开讨论,每

组选出代表,发表见解,提出问题.

生:我们开始上课的“时间”:8:00就是指的时刻;下课的“时间”:8:45也是指的时刻.这样每个活动开始和结束的那一瞬间就是指时刻.

生:我们上一堂课需要45分钟,做眼保健操需要5分钟,这些都是指时间间隔,每一个活动所经历的一段时间都是指时间间隔.

师:根据以上讨论与交流,能否说出时刻与时间的概念.

教师帮助总结并回答学生的提问.

师:时刻是指某一瞬时,时间是时间间隔的简称,指一段持续的时间间隔。两个时刻的间隔表示一段时间.

让学生再举出一些生活中能反映时间间隔和时刻的实例,并让他们讨论.

教师利用课件展示某一列车时刻表,帮助学生分析列车运动情况.

(展示问题)根据下列“列车时刻表”中的数据,列车从广州到长沙、郑州和北京西站分别需要多长时间?

T15站名T16

18:19北京西14:58

00:35 00:41郑州08:42 08:36

05:49 05:57武昌03:28 03:20

09:15 09:21长沙23:59 23:5l

16:25广州16:52

参考答案:6小时59分、15小时50分、22小时零6分.

(教师总结)

篇7:高三物理研究匀变速直线运动教案

高三物理研究匀变速直线运动教案

一、实验目的

1.练习使用打点计时器,学习利用打上点的纸带研究物体的运动.

2.掌握判断物体是否做匀变速运动的方法.

3.测定匀变速直线运动的加速度.

二、实验原理

1.打点计时器

打点计时器是一种使用交流电源的计时仪器.它每隔0.02s打一次点(交流电频率为50Hz)。电磁打点计时器的工作电压是4~6V,电火花打点计时器的工作电压是220V。

2.纸带上打的点的意义

纸带上的点就表示了和纸带相连的运动物体在不同时刻的位置.研究纸带上点之间的间隔,就可以了解物体的运动情况.

3.分析纸带可判断物体运动的性质:

①若相等时间内的位移相等,则物体做匀速直线运动;

②若相等时间内的位移不相等,则物体做变速直线运动;

③若连续相等时间内的位移差为恒量,则物体做匀变速直线运动,并可由△x=aT2求出加速度(为了减小误差常用逐差法或v-t图象法求加速度).

4.求加速度的方法:

①用逐差法求加速度

②用v-t图象法

先根据匀变速直线运动某段时间中点的瞬时速度等于这段时间的平均速度

③平均速度法求加速度:

即利用已求出的瞬时速度值,按加速度的定义式求加速度值,为了充分利用所有实验数据,减小误差,同样采用逐差法进行数据处理.

三、实验器材

电火花打点计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片.

四、实验步骤

⑴、把附有滑轮的长木板平放在实验桌上并使滑轮伸出桌面。

⑵、把打点计时器固定在木板上无滑轮的一端,如右图。

⑶、把一条细绳拴在小车上,细绳跨过定滑轮,下边吊着适当的数量钩码。

点拨:吊适当数量的钩码是为小车的加速度适当大些,减小长度测量的相对误差,并能在纸带上长约50厘米的范围内取出7-8个计数点为宜。

⑷、把穿过打点计时器的`纸带固定在小车后面。

⑸、先使小车依靠在打点计时器处,接通电源后再释放小车让其运动。

⑹、断开电源取下纸带。

⑺、换上新纸带再做两次。

点拨:再做两次的目的是为了在点子已打出的纸带中选出两条无漏点、无双点,点距正常清晰的纸带,一条作逐差法用,一条作图象法用。

⑻、在选出的一条纸带上测量每个计数点与起始计数点的距离d1、d2、d3如右图。

点拨:测长度时,不要用短尺一段一段地测量后相加,以免误差积累,测量时要估计到最小分度的一半(0.5毫米),纸带上开头过于密集的点应甩掉不用,并且不直接测量打点间隔,而采取计数点进行测量,旨在减小测量中的相对误差。

五、误差分析

1.纸带的测量误差.

2.打点计时器计时误差.

六、注意事项

⑴、计时器打出的点不清晰,可能是电压偏低或振针位置不合适。

⑵、打点计时器在纸带上应打出轻重合适的小圆点,如果打出的是短横线,应调整一下振针距复写纸的高度,使之增大一些。

⑶、计时器打点时,应先接通电源,待打点稳定后,再拉动纸带。

⑷、拉动纸带前,应使拉动端停靠在靠近打点计时器的位置。

⑸、小车的加速度应适当大些,可以减小长度的测量误差,加速度大小以能在约50cm的纸带上清楚地取出7~8个计数点为宜。

篇8:高三选修3-1物理《电势差》教案

高三选修3-1物理《电势差》教案

学习内容 1.5 电势差

学习目标 1.理解电势差的概念,知道电势差与电势零点的选择无关。

2.掌握两点间电势差的表达公式,知道两点间电势差的正负号与这两点的电势高低之间的对应关系。

3.知道在电场中移动电荷时静电力做功与两点间电势差之间的关系,会应用静电力做功的有关公式进行计算。

学习重、难点 电势差的概念,

电势能的改变与电场力做功的关系,电功计算。

学法指导 自主、合作、探究

知识链接 1.在电场中移动电荷时,静电力做的功与电荷的 和 有关,但与电荷经过的 无关。

2.电场力做正功,电势能 ;电场力做负功,电势能 。

3.电荷在电场中某一点的 与它的 的比值,叫做这一点的电势,定义式: 。

学习过程 用案人自我创新

【自主学习】

不同的位置作为测量高度的起点,同一地方高度的数值 ;但两个地方的高度差却 。

选择不同的位置作为电势零点,电场中某点电势的数值 ;但电场中某两点间的电势的差值 。

一、电势差(U):

1、概念: 。

设电场中A点的电势为 ,B点的电势为 ,则它们之间的电势差可以表

示成 =

也可以表示成 =

问:(1) 与 成什么关系?

(2)电势差是标量还是矢量?电势差的正负表示什么?

2、电势差的单位: 符号:

二、电势差与静电力做功的关系(通过W=EPA—EPB推导)

= 或 =

(1)只要知道电场中两点的电势差,就可以求出在这两点间移动电荷时静电力做的功,而不必考虑 和 。

(2)公式的适用范围?

【例题解析】

例1、如图,是某电场中的一条直电场线。一电子从a点由静止释放,它将沿直线向b点运动,则可判断( )

A.该电场一定是匀强电场

B.场强Ea小于Eb b a

C.电子具有的电势能EPa一定大于EPb

D.电势Ua一定低于Ub

例2、有一带电荷量 q= C的点电荷,从电场中的A点移到B点时,克服电场力做功 J.从B点移到C点电场力做功 .

(1)AB,BC,CA间电势差各位多少?

(2)如以B点的电势为零,则A,C两点的电势各为多少?电荷在A,C两

点的电势能各位多少?

例题3、如图所示,一负点电荷产生的`电场中有A、B两点,两点间的电势差为200V,电量为-6×10-8C的电荷从B点移到A点,它的电势能改变多少?该电荷在A、B两点的电势能哪个大?哪点场强大?哪点电势高?

达标检测 1.下列说法中哪些是正确的( )

A.沿电场线的指向,场强一定越来越小

B.沿电场线的指向,电势一定越来越低

C.沿电场线方向移动电荷,电势能逐渐减小

D.在电场力作用下,正电荷一定从电势高处向电势低处移动

2.对于电场中A、B两点,下列说法正确的是( )

A.电势差的定义式UAB=WAB/q说明两点间的电势差UAB与电场力做功WAB成正比,与移动电荷的电荷量q成反比

B.A、B两点间的电势差等于将正电荷从A点移到B点电场力所做的功

C.将1C电荷从A点移到B点,电场力做1J的功,这两点间的电势差为1V

D.若电荷由A点移到B点的过程,除受电场力外,还受其他力的作用,电荷电势能的变化就不再等于电场力所做的功

3.如图13-5-2所示,在同一条电场线上有A、B两点,已知将-q从A点移到B点,外力克服电场力做功,则电场线的方向是由 点指向 点的;A、B两点比较, 点的电势高.

4.如图13-5-3所示,电场中有A、B两点,则下列说法中正确的是( )

A.电势 ,场强EA>EB

B.电势 ,场强EA

C.将电荷+q从A点移到B点电场力做了正功

D.将电荷-q分别放在A、B两点时具有的电势能EA>EB

5.a、b为电场中的两点,且a点电势高于b点,则可知( )

A.把负电荷从a点移到b点电场力做负功,电势能增加

B.把正电荷从a点移到b点电场力做正功,电势能减少

C.无论移动的是正电荷还是负电荷,电荷的电势能都要减少

D.无论是否有电荷移动,a点电势能总是大于b点的电势能

6.如图13-5-4所示,a、b、c是一条电场线上的三点,a、b间的距离等于b、c间的距离.用 和Ea、Eb、Ec分别表示a、b、c三点的电势和场强,可以判定( )

A. B.Ea>Eb>Ec

C. D.Ea=Eb=Ec

7.若带正电荷的小球只受电场力的作用,则它在任意的一段时间内( )

A.一定沿电场线由高电势处向低电势处运动

B.一定沿电场线由低电势处向高电势处运动

C.不一定沿电场线运动,但一定由高电势处向低电势处运动

D.不一定沿电场线运动,也不一定由高电势处向低电势处运动[高考资源网KS5U.COM]

8.图9是某匀强电场的等势面示意图,A、B两点相距5cm,θ=53°,一带电量为-4×10-6C的微粒沿AB匀速运动,则此微粒的质量为_______kg.(取g=10m/s2)

9.在如图所示的电场中,把点电荷q=+2×10-11C,由A点移到B点,电场力做功WAB=4×10-11J.A、B两点间的电势差UAB等于多少?B、A两点间的电势差UBA等于多少?

10.一带负电的粒子,q=-2.0×10-9C,在静电场中由a点运动到b点,除电场力外,其它力作的功为6.0×10-5J,粒子动能增加了8.0×10-5J,求a、b两点间的电势差Uab等于多少?

篇9:高三物理平抛运动教案

高三物理平抛运动教案

考点8:曲线运动中质点的速度沿轨道的切线方向,且必具有加速度.(能力级别:Ⅱ)

1.做曲线运动的物体在某一点(或某一时刻)的速度方向是在曲线的切线方向。

质点在某一点(或某一时刻)的速度方向是在曲线的这一点的切线方向。切线方向和物体的走向(轨迹的延伸方向)有关,我们规定,切线方向应与该处轨迹的延伸方向一致。例如从A到B,它经C点时速度方向如图所示。直线运动中的速度方向可看成是曲线运动中速度方向的特例。

曲线运动是变速运动,所以曲线运动一定具有加速度,即合外力一定不为零。

2.物体做曲线运动的条件

曲线运动既然是一种变速运动,就一定有加速度,由牛顿第二定律可知,也一定受到合外力作用。当运动物体所受合外力的方向跟物体的速度方向在同一条直线上(同向或反向)时,物体做直线运动。这时合外力只改变速度大小,不改变速度的方向。当合外力的方向跟速度方向不在同一条直线上时,可将合外力分解到沿着速度方向和垂直于速度方向上,沿着速度方向的分力改变速度大小,垂直于速度速度方向的分力改变速度的方向,这时物体做曲线运动。若合外力与速度方向始终垂直,物体就做速度大小不变、方向不断改变的曲线运动。若合外力为恒力,物体就做匀变速曲线运动。总之,物体做曲线运动的条件是:物体所受的合外力跟它的速度方向不在同一直线上。

3.力决定了给定物体的加速度,力与速度的方向关系决定了物体的运动规律。

【例题】如图某质点在恒力F作用下从A点沿图所示曲线运动到B点,到达B点后,质点受到的力大小不变,但方向恰与F相反,则它从B点开始的运动轨迹可能是图中的哪条曲线

A.曲线a B.曲线b

C.曲线c D.以上三条曲线都不可能

(全国高考题)

解析:物体由A到B是在恒力作用下,沿曲线运动的,那么力F的方向必然指向轨迹AB的凹向,即轨迹始终处于外力与速度的夹角之中,可以肯定运动到B点时,该力F一定指向过B点的切线的下方,反向后,运动的轨迹应该在-F与过B的切线之间,所以轨迹应该是Ba。因此答案选:A

变式练习:

1.一物体由静止开始下落一小段时间后突然受一恒定水平风力的影响,但着地前一小段时间风突然停止,则其运动轨迹的情况可能是图中的哪一个?

考点7:运动的合成和分解.(能力级别:Ⅰ)

运动的合成与分解是研究复杂运动的重要方法,主要用于解决曲线运动(一般不研究圆周运动),用一维的'运动来解决二维和三维运动的问题。而运动的合成与分解与力的合成与分解遵循同样的规律,即平行四边形法则。描述运动的物理量中的矢量都可以用平行四边形法则来合成和分解。

(1)定义:已知分运动求合运动,叫运动的合成;已知合运动求分运动,叫运动的分解。

分运动和合运动是一种等效替代关系,运动和合成与分解是研究曲线运动的一种基本方法。

(2)合运动和分运动的关系

①等效性:各分运动的规律叠加起来与合运动的规律有完全相同的效果。

②独立性:某个方向上的运动不会因为其它方向上是否有运动而影响自己的运动性质。在运动中一个物体可以同时参与几种不同的运动,在研究时,可以把各个运动都看做是互相独立进行,互不影响。

运动的独立性原理(叠加原理):一个运动可以看成由几个各自独立进行的运动叠加而成,这就是运动的独立性原理或运动的叠加原理。

③等时性:合运动通过合位移所需的时间和对应的每个分运动通过分位移的时间相等。即各分运动总是同时开始,同时结束。

分运动和合运动都是属于同一个物体的,它们从同一地点出发,经过相同的时间,到达同一个位置。

(3)运动的合成与分解的运算法则

运动的合成与分解是指物体运动的各物理量:即位移、速度、加速度的合成与分解。由于它们是矢量,所以它们都遵循矢量合成和分解法则。

两分运动在同一直线上时,同向相加,反向相减。不在同一直线上,按照平行四边形定则进行合成与分解。

(4)如何确定一个运动的分运动

确定一个运动的分运动的一般步骤是:

①根据运动的效果(产生位移)确定运动分解方向

②应用平行四边形定则,画出运动分解图

③将平行四边形转化为三角形,应用物理知识求解。

篇10:高三物理全反射问题复习教案

高三物理全反射问题复习教案

一、全反射

当入射角增大到某一角度,使折射角达到90时,折射光完全消失,只剩下反射光,这种现象叫做全反射全反射临界角:(1)光从光密介质射向光疏介质,当折射角变为90时的入射角叫临界角;(2)光从折射率为n的介质射向真空时

临界角的计算公式:

产生全反射的条件:

(1)光必须从光密介质射向光疏介质;

(2)入射角必须等于或大于临界角.

二、光导纤维

利用光的全反射,可制成光导纤维。光从光导纤维一端射入后,在传播过程中经过多次全反射,最终从另一端射出。由于发生的是全反射,因此传播过程中的能量损耗非常小。用光导纤维传输信息,既经济又快捷。

12、(3)一个等腰直角三棱镜的截面如图所示,一细束绿光从AC面的'P点沿平行底面AB方向射入棱镜后,经AB面反射,再从BC面的Q点射出,且有PQ∥AB(图中未画光在棱镜内的光路).如果将一细束蓝光沿同样的路径从P点射入三棱镜,则从BC面射出的光线是__

A.仍从Q点射出,出射光线平行于AB

B.仍从Q点射出,出射光线不平行于AB

C.可能从点射出,出射光线平行于AB

D.可能从点射出,出射光线平行于AB

答:C;(3分)

单色光

b

a

O

061.北京西城区5月抽样15.如图所示,一束单色光沿半圆柱形玻璃砖的半径垂直ab面入射,有光线从ab面射出。以O点为圆心,将玻璃砖缓慢转过角时,恰好没有光线从ab面射出。则该玻璃砖的折射率为(B)

A.B.C.D.

太阳光

b

a

小水珠

054.北京市海淀区一模试卷16.彩虹是悬浮于空气中的大量小水珠对阳光的色散造成的,如图所示为太阳光照射到空气中的一个小水珠发生全反射和色散的光路示意图,其中a、b为两束频率不同的单色光。对于这两曙光,以下说法中正确的是(B)

A.单色光a比单色光b的频率高

B.由水射向空气,a光发生全反射的临界角大于b光发生全反射的临界角

C.在水中a光的传播速度小于b光的传播速度

D.如果b光能使某金属发生光电效应,则a光也一定能使该金属发生光电效应

篇11:届高三物理一轮教案:匀速直线运动

届高三物理一轮教案:匀速直线运动

2011届高三物理一轮教案:匀速直线运动 一、基本概念 1、质点:用来代替物体、只有质量而无形状、体积的点。它是一种理想模型,物体简化为质点的条件是物体的形状、大小在所研究的`问题中可以忽略。 2、时刻:表示时间坐标轴上的点即为时刻。例如几秒初,几秒末,几秒时。 时间:前后两时刻之差。时间坐标轴上用线段表示时间,例如,前几秒内、第几秒内。 3、位置:表示空间坐标的点。 位移:由起点指向终点的有向线段,位移是末位置与始位置之差,是矢量。 路程:物体运动轨迹之长,是标量。   下载地址:www.wulifudao.com/DatumInfo-3033.aspx

篇12:高三物理《光的衍射》教案

高三物理《光的衍射》教案

13.5 光的衍射

【教学目标】

(一)知识与技能

1.通过实验观察,让学生认识光的衍射现象,知道发生明显的光的衍射现象的条件,从而对光的波动性有进一步的认识。

2.通过学习知道“光沿直线传播”是一种近似规律。

(二)过程与方法

1.通过讨论和对单缝衍射装置的观察,理解衍射条件的设计思想。

2.在认真观察课堂演示实验和课外自己动手观察衍射现象的基础上,培养学生比较推理能力和抽象思维能力。

(三)情感、态度与价值观

通过“泊松亮斑”等科学小故事的学习,培养学生坚定的自信心、踏实勤奋的工作态度和科学研究品德。

【教学重点】

单缝衍射实验的观察以及产生明显衍射现象的条件。

【教学难点】

衍射条纹成因的初步说明。

【教学方法】

1.通过机械波衍射现象类比推理,提出光的衍射实验观察设想。

2.通过观察分析实验,归纳出产生明显衍射现象的条件以及衍射是光的波动性的表现。

3.通过对比认识衍射条纹的特点及变化,加深对衍射图象的了解。

【教学用具】

JGQ型氦氖激光器25台,衍射单缝(可调缝宽度),光屏、光栅衍射小圆孔板,两支铅笔(学生自备),日光灯(教室内一般都有),直径5 mm的自行车轴承用小钢珠,被磁化的钢针(吸小钢珠用),投影仪(本节课在光学实验室进行)

【教学过程】

(一)引入新课

复习水波的衍射

[投影水波衍射图片(如图1、图2所示)]

图1

图2

师:请大家看这几幅图片,回忆一下相关内容,回答下面两个问题:

1.什么是波的衍射?

2.图2中哪一幅衍射现象最明显?说明原因。

生1:(议论后,一人发言)波能绕过障碍物的现象叫波的衍射.图2中丙图衍射最明显,因为这里的孔宽度最小。

师:前一个问题回答得很好,后一个问题有没有同学还有其他看法?

生2:我认为丙图中孔的尺寸虽然是最小,但不一定就是发生明显衍射现象的原因,我们应该用它跟波长比。

师:很好,大家一起来说说发生明显衍射现象的条件是什么?

学生一起总结:障碍物或孔的尺寸比波长小或者跟波长相差不多。

师:光也是一种波,也能够发生衍射。这节课我们来认识光的衍射。

(二)进行新课

1.光的衍射

师:通过前面对光的干涉的学习,我们知道光是具有波动性的,光既然是一种波,那么在传播过程中也应该具有衍射的现象,大家有没有见过光的衍射现象呢?能举出例子吗?

(学生讨论后,一致认为,光波也应有衍射本领,但无法举出例子)

师:根据我们刚才复习的明显衍射现象的条件,大家说说看,为什么平时我们不易观察到光的衍射?

生:可能是因为光波波长很短,而平常我们遇到的障碍物或孔的尺寸比较大,所以不易观察到光的衍射现象.

师:很有道理,大家来想想办法解决这一问题.

(学生讨论,设计出多种实验观察方案,绝大部分着眼于发生明显衍射现象的条件,教师加以肯定鼓励)

[实验观察]

安排学生根据上面的设想,自制单缝和小孔.

1.用单缝观察日光灯光源.

2.用小孔观察单色点光源.

师:请大家认真观察,然后告诉我你看到的现象.

(学生回答基本上有两类现象,一是观察到了单一的一条亮线或一个圆形亮点,二是观察到比较模糊的明暗相间的线状或环状条纹)

师:大家做得很认真,有几位同学已成功地观察到了光的衍射现象,现在我们再用更好的装置来一起观察一下光的衍射现象.

[教师演示]

在不透明的屏上装有一个宽度可以调节的单缝,用氦氖激光器照射单缝,在缝后适当距离处放一光屏,如图所示.

调节单缝宽度演示,得出下列结果.

缝宽 较宽 较窄 很窄 极窄 关闭

屏上现象 一条较宽亮线 一条较窄亮线 亮线变宽、变暗并出现明暗相间条纹 明暗条纹清晰、细小 条纹消失

师:请大家将我们的实验结果与课本插图的几幅照片比较,总结一下光要发生明显的衍射应满足什么条件.

生:当狭缝的宽度比波长小或跟波长差不多时,光偏离了直线传播方向,发生了明显的衍射.

(点评:通过实验探究,获取必要的感性认识。为以后从理论上认识光的衍射奠定基础。)

师:大家通过实验观察到,光在传播过程中能离开直线绕过障碍物到达阴影里去,这一现象叫做光的衍射现象.衍射时产生的明暗条纹叫做衍射图样.其实,不仅单缝,还有圆孔,多条平行狭缝以及各种不同形状的障碍物都能使光发生衍射.同机械波的衍射一样,光发生明显衍射现象的条件是:障碍物或孔的尺寸可以跟光的.波长相比,甚至比光的波长还小.

师:下面我们再来观察一下圆孔和光栅的衍射现象.

(教师演示,将单缝分别换成圆孔和光栅,可以在屏上观察到清楚的明暗相间的圆环和清晰的明暗相间的条纹.)

师:同学们已经注意到,在衍射现象中,常有一些亮线和暗线,据此大家来猜猜原因.

生:在干涉现象中我们也观察到明暗相间的条纹,我想这里的道理应该跟在干涉现象中差不多.

师:猜想有道理.其实在光的衍射现象中,来自单缝或圆孔上不同位置的光,到光屏处的路程差满足一定的特点,叠加时加强或减弱,形成明暗相间的条纹,这确实跟光的干涉原理是相似的,大家再考虑一下,如果用白光做衍射实验,条纹会怎样呢?

生:条纹应该是彩色的,因为不同色光波长不同,在叠加时形成条纹位置也不一样,叠合时形成彩色.

师:回答得非常好,大家明白了吗?

生:明白.(教师指导学生用两支铅笔并拢观察日光灯衍射条纹)

师:光的衍射现象表明,我们平时说的“光沿直线传播”只是一种特殊情况。在障碍物的尺寸比波长大得多的情况下,光的传播是沿直线,当障碍物的尺寸可以与光的波长相比拟时,光的衍射现象就十分显著,这时就不能说光沿直线传播了。

师:在光的衍射现象中,历史上有过一个“泊松亮斑”的故事,请大家来阅读课本66页“科学足迹”栏目中的短文――泊松亮斑.

师:大家想不想看看这个亮斑?

生:想.

(教师演示,用被磁化的钢针吸一粒钢珠,悬起,使激光束与钢珠球心在同一直线上,如图所示,就能在屏上观察到钢珠暗影中心有一亮斑,即泊松亮斑.)

师:著名数学家泊松根据物理学家菲涅耳提出的波动理论推算出圆板阴影的中心应该是一个亮斑,想借此驳倒菲涅耳的波动理论,菲涅耳与阿拉果接受了泊松的挑战,通过多次实验,发现圆板中心确有一个亮斑。这样“泊松亮斑”实验就成了光的波动理论的精彩验证。大家从这个故事得到什么启发。

生1:验对物理研究有重要作用。

生2:到别人的质疑,要冷静面对,不要轻易放弃自己的立场或观点。

生3:学要坚持真理,实事求是。

(学生的回答很全面,教师要及时肯定鼓励)

2.衍射光栅

师:指导学生阅读教材有关内容。了解衍射光栅的制作原理。

(三)课堂总结、点评

本节课我们通过复习,回顾了机械波的衍射及产生明显衍射的条件。我们还观察到了光波的衍射现象。进一步认识光的波动性,光的直线传播只是一种特殊情况。

下面我们通过课件,再来回顾一下光的衍射现象。

[课件演示]《光的衍射》。(再次回顾光的衍射现象,增强感性认识,达到巩固所学知识的目的。)

(四)课余作业

完成P68“问题与练习”的题目。

课后阅读67页“科学漫步”――X射线衍射与双螺旋。

附:课后训练

1.点光源照射一个障碍物,在屏幕上所成的阴影的边缘是模糊的,这种现象是光的 ( )

A.反射现象 B.折射现象 C.干涉现象 D.衍射现象

答案:D

2.下列情况中能产生明显衍射现象的是 ( )

A.光的波长比孔或障碍物的尺寸大得多

B.光的波长与孔或障碍物的尺寸相仿

C.光的波长等于孔或障碍物的尺寸

D.光的波长比孔或障碍物的尺寸小得多

答案:ABC

3.下列关于单缝衍射图样的说法中正确的是 ( )

A.它和双缝干涉图样完全相同

B.亮条纹的亮度都相同,而宽度不同

C.中央亮条纹的亮度和宽度最大

D.亮条纹的宽度相同,而亮度不同

答案:C

4.在用单色平行光照射单缝观察衍射现象的实验中,下列说法正确的是 ( )

A.缝越窄,衍射现象越显著

B.缝越宽,衍射现象越显著

C.照射光的波长越长,衍射现象越显著

D.照射光的频率越高,衍射现象越显著

解析:要观察到明显的衍射现象,必须孔或障碍物的尺寸足够小,可以和光的波长相比.由于光的波长极短,所以要求孔或缝的尺寸要非常小,光的波长越长,相当于缝越窄,而频率越高,波长越小,故AC正确.

答案:AC

5.在做杨氏双缝干涉实验时,将其中的一条狭缝挡住,在屏上仍能观察到明暗相间的条纹,此条纹 ( )

A.仍是原来的干涉条纹,只是亮度减弱了

B.仍是干涉条纹,只是条纹宽度变窄了

C.是衍射条纹

D.无法确定是干涉条纹还是衍射条纹

答案:C

6.下列哪些现象是光的衍射产生的 ( )

A.泊松亮斑

B.阳光下茂密的树阴中地面上的圆形亮斑

C.阳光经凸透镜后形成的亮斑

D.平行光照在一个较大障碍物上后,影的轮廓模糊不清

答案:AD

7.在下图中,A、B两幅图是由单色光分别入射到圆孔而形成的图样.其中A是光的________(填“干涉”或“衍射”)图样.由此可以判断出图A所对应的圆孔的孔径________(填“大于”或“小于”)图B所对应的圆孔的孔径。

A B

解析:只有障碍物或孔的尺寸比光波波长小或跟光波波长相仿时,才能发生明显的衍射现象,图A是光的衍射图样.由于光波波长很短,约在10-7 m数量级以上,所以图A对应的圆孔的孔径比图B对应的圆孔的孔径小.图B的形成可以用光的直进解释.

答案:衍射 小于

8.在固定于光具座上的点燃的蜡烛和光屏之间,放置一个不透明的板,板上开一个直径可调的小孔,让圆孔直径从1 cm左右开始逐渐调小至封闭,在这一过程中在屏上将依次出现的图样正确的是 ( )

A.蜡烛倒立的像,明亮的圆斑,明暗相间的圆环

B.蜡烛倒立的像,明暗相间的圆环,明亮光斑

C.明亮圆斑,蜡烛倒立的像,明暗相间的圆环

D.明亮圆斑,明暗相间的圆环,蜡烛倒立的像

答案C

篇13:高三物理动量与能量教案

高三物理动量与能量教案

动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。分析这类问题时,应首先建立清晰的物理图象,抽象出物理模型,选择合理的物理规律建立方程进行求解。

一、力学规律的选用原则

1、如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律。

2、研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间问题)或动能定理(涉及位移问题)去解决。

3、若研究的对象为一物体系统,且它们之间有相互作用,一般用两个守恒定律去解决问题,但须注意研究的问题是否满足守恒条件。

4、在涉及相对位移问题时,则优先考虑能量守恒定律,即用系统克服摩擦力所做的总功等于系统机械能的减少量,也即转变为系统内能的量。

5、在涉及有碰撞、爆炸、打击、绳绷紧等物理现象时,须注意到一般这些过程均隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间都极短,故动量守恒定律一般能派上大用场。

二、利用动量观点和能量观点解题应注意下列问题

(1)动量定理和动量守恒定律是矢量表达式,还可以写出分量表达式,而动能定理和能量守恒定律是标量式,绝无分量式。

(2)从研究对象上看动量定理既可研究单体,又可研究系统,但高中阶段一般用于单体,动能定理在高中阶段只能用于单体。

(3)动量守恒定律和能量守恒定律,是自然界最普遍的`规律,它们研究的是物体系统,解题时必须注意动量守恒的条件和机械能守恒的条件,在应用这两个规律时,应当确定了研究对象及运动状态变化的过程后,根据问题的已知条件和要求解未知量,选择研究的两个状态列方程求解。

(4)中学阶段可用力的观点解决的问题,若用动量观点或能量观点求解,一般都要比用力的观点简便,而中学阶段涉及的曲线运动(加速度不恒定)、竖直面内的圆周运动、碰撞等,就中学只是而言,不可能单纯考虑用力的观点解决,必须考虑用动量观点和能量观点解决。

篇14:高三物理匀变速直线运动规律复习教案

高三物理匀变速直线运动规律复习教案

【考点自清】

关于规律的学习主要注意以下两个方面:规律是如何得出的;规律的适用范围(或条件)是什么。

学习物理规律除了掌握结论,还要知道结论是如何得出的。如同学们都知道匀变速直线运动的位移公式,却有很多人不清楚是怎样得出的;知道自由下落的电梯内的物体和卫星上的物体都处于完全失重状态,但不知道为什么这两种不同的运动都会完全失重;知道静电屏蔽时内部的场强为零却不知道怎样证明这些都是重结论、轻过程的结果。这些同学在上课时尽管做了很多笔记,但对规律的得出过程并不清楚,造成不会做题。

学习物理规律时还要注意规律的适用范围,如动量定理必须在惯性系中才能使用,用动能定理解题时要选大地为参考系来计算动能和功。

一、匀变速直线运动

定义:在相等的时间内速度的变化相等的直线运动叫做匀变速直线运动。

特点:加速度大小、方向都不变。

二、匀变速直线运动的规律

说明:

(1)以上公式只适用于匀变速直线运动。

(2)四个公式中只有两个是独立的,即由任意两式可推出另外两式。四个公式中有五个物理量,而两个独立方程只能解出两个未知量,所以解题时需要三个已知条件,才能有解。

(3)式中v0、vt、a、x均为矢量,方程式为矢量方程,应用时要规定正方向,凡与正方向相同者取正值,相反者取负值;所求矢量为正值者,表示与正方向相同,为负值者表示与正方向相反。通常将v0的方向规定为正方向,以v0的位置做初始位置。

(4)以上各式给出了匀变速直线运动的普遍规律。一切匀变速直线运动的差异就在于它们各自的v0、a不完全相同,例如a=0时,匀速直线运动;以v0的方向为正方向; a0时,匀加速直线运动;a0时,匀减速直线运动;a=g、v0=0时,自由落体应动;a=g、v00时,竖直抛体运动。

(5)对匀减速直线运动,有最长的运动时间t=v0/a,对应有最大位移x=v02/2a,若tv0/a,一般不能直接代入公式求位移。

三、匀变速直线运动的重要推论

(1)任意两个连续相等的时间间隔T内的位移之差是一个恒量,

(2)在一段时间t内,中间时刻的瞬时速度v等于这段时间的平均速度,

(3)中间位移处的速度:

四、初速度为零的匀加速直线运动(设T为等分时间间隔):

⑴、1T末、2T末、3T末瞬时速度的比为

⑵、1T内、2T内、3T内位移的比为

⑶、第一个T内,第二个T内,第三个T内位移的比为

⑷、从静止开始通过连续相等的位移所用时间的比

【重点精析】

一、匀变速直线运动规律的基本应用

1、基本公式中的v0、vt、a、x都是矢量,在直线运动中,若规定正方向,它们都可用带正、负号的代数值表示,把矢量运算转化为代数运算。通常情况下取初速度方向为正方向,凡是与初速度同向的物理量取正值,凡是与初速度v0反向的物理量取负值。

2、对物体做末速度为零的匀减速直线运动,常逆向思维将其视为初速度为零、加速度大小相同的匀加速直线运动,解题时方便实用。

3、注意联系实际,切忌硬套公式,例如刹车问题应首先判断车是否已经停下来。

二、求解匀变速直线运动的一般思路

审题画出过程草图判断运动性质选取正方向(或选取坐标轴)选用公式列出方程求解方程,必要时对结果进行讨论。

1、弄清题意,建立一幅物体运动的图景。为了直观形象,应尽可能地画出草图,并在图中标明一些位置和物理量。

2、弄清研究对象,明确哪些量已知,哪些量未知,根据公式特点恰当地选用公式。

3、利用匀速变直线运动的两个推论和初速度为零的匀加速直线运动的特点,往往能够使解题过程简化。

4、如果题目涉及不同的运动过程,则应重点寻找各段运动的速度、位移、时间等方面的关系。

三、匀变速直线运动问题的求解方法

在众多的匀变速直线运动的`公式和推论中,共涉及五个物理量v0、vt、a、x、t,合理地运用和选择方法是求解运动学问题的关键。

1、基本公式法:是指速度公式和位移公式,它们均是矢量式,使用时应注意方向性。一般以v0的方向为正方向,其余与正方向相同者取正,反之取负。

2、平均速度法:定义式v=x/t,对任何性质的运动都适用,而只适用于匀变速直线运动。

3、中间时刻速度法

利用任一时间t内中间时刻的瞬时速度等于这段时间t内的平均速度,适用于任何一个匀变速直线运动,有些题目应用它可以避免常规解法中用位移公式列出的含有t2的复杂式子,从而简化解题过程,提高解题速度。

4、比例法

对于初速度为零的匀加速直线运动与末速度为零的匀减速运动,可利用初速度为零的匀加速直线运动的五大重要特征的比例关系,用比例法求解。

5、逆向思维法

把运动过程的末态作为初态的反向研究问题的方法。一般用于末态已知的情况。

6、图象法

应用v―t图象,可把复杂的问题转变为较为简单的物理问题解决,尤其是用图象定性分析,可避开繁杂的计算,快速找出答案。

7、巧用推论x=xn+1―xn=aT2解题

匀变速直线运动中,在连续相等的时间T内的位移之差为一恒量,即xn+1―xn=aT2,对一般的匀变速直线运动问题,若出现相等的时间间隔,应优先考虑用x=aT2求解。

动态平衡复习高三物理教案

高三备课组工作计划

中学物理教师述职报告

相对论简介复习高三物理教案

物理教师年度工作计划

高中物理教研组工作计划

物理教师的工作计划精选

高中物理教研组教研工作计划

物理科教师教学总结

高三体育备课组工作总结

高三物理基本粒子的教案
《高三物理基本粒子的教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【高三物理基本粒子的教案(精选14篇)】相关文章:

《物粒子的波粒二象性》高三物理教案2023-01-27

高三物理备课组计划2024-02-26

高三下学期个人总结2023-04-09

高中物理组工作计划2023-06-13

物理备课总结2022-11-17

物理教研组的工作总结2023-05-08

高三语文第二轮复习教案2023-03-29

物理教师年度考核总结2023-08-11

高三物理平抛运动教案2022-05-07

高三物理备课组工作计划2023-02-24

点击下载本文文档