浅谈变频器在空压机节能改造中的应用

时间:2024-02-24 07:26:34 其他范文 收藏本文 下载本文

浅谈变频器在空压机节能改造中的应用(共7篇)由网友“dayingji33”投稿提供,下面小编给大家整理后的浅谈变频器在空压机节能改造中的应用,欢迎阅读与借鉴!

浅谈变频器在空压机节能改造中的应用

篇1:浅谈变频器在空压机节能改造中的应用

1、空压机在工业生产中有着广泛的应用,

空压机的种类有很多,有活塞式空压机、螺杆式空压机、离心式空压机,但其供气控制方式几乎都是采用加、卸载控制方式。该供气控制方式虽然原理简单、操作简便,但存在能耗高,进气阀易损坏、供气压力不稳定等诸多问题。随着社会的发展和进步,高效低耗的技术已愈来愈受到人们的关注。在空压机供气领域能否应用变频调速技术,节省电能同时改善空压机性能,提高供气品质就成为我们关心的一个话题。

2、空压机工作原理目前空压机上都采用两点式控制(上、下限控制)或启停式控制(小型空气压缩机)

也就是当压缩气体气缸内压力达到设定值上限时,空压机通过本身气压或油压关闭进气阀,小型空气压缩机则停机。

当压力下降到设定值下限时,空压机打开进气阀,小型空压机则又启动。传统的控制方式容易对电网造成冲击,对空压机本身也有一定的损害,当用气量频繁波动时,尤其明显。

正常工作情况下,空气被压缩到储气罐。空压机各点的检测(包括压缩空气温度、压力,镙杆温度、冷却水压力、温度和油压、油温等等)和整体控制由主控制单板机控制。

当空压机出口压力达到设定值上限时,通过油压分路阀关闭进气口,同时打开内循环管路,作自循环运行。此时用气单位继续用气。

当压力下降到设定值下限时,油压分路阀关闭循环管路,打开空气进口,空气又由过滤器经压缩到储气罐中。在静态,原起动方式(Y-△),及加载、卸载时对电网供配电设备及镙杆都会造成极大的冲击。尤其是能源的严重浪费。

主电机转速下降,轴功率将下降很多。节能潜力相当大。)变频节能的效果是十分显著的,特别是调节范围大的系统及设备,通过实际应用可以直观的看出在流量变化时只要对转速(频率)稍作改变就会使轴功率有更大程度上的改变,就因有此特点使得变频调速(节能)方式成为一种趋势并且不断深入的应用于各行业及其各种调整领域。

3、加、卸载供气控制方式存在的问题

3.1耗能分析我们知道,加、载控制方式使得压缩气体的压力在Pmin~Pmax之间来回变化。Pmin是最低压力值,即能够保证用户正常工作的最低压力。一般情况下,Pmin、Pmax之间关系可以用下式来表示:CPmax=(1 δ)Pmin是一个百分数,其数值大致在10%~25%之间。而若采用变频调速技术可连续调节供气量的话,则可将管网压力始终维持在能满足供气压力上,即 Pmin附近。由此可知,在加、卸载供气控制方式下的空压机较之变频系统控制下的空压机,所浪费的能量主要在2个部分:

(1)压缩空气压力超过Pmin所消耗的能量在压力达到Pmin后,原控制方式决定其压力会继续上升(直到Pmax)。这一过程同样是一个耗能过程。

(2)卸载时调节方法不合理所消耗的能量通常情况下,当压力达到Pmax时,空压机通过如下方法来降压卸载:关闭进气阀使电机处于空转状态,同时将分离罐中多余的压缩空气通过放空阀放空。这种调节方法要造成很大的能量浪费。

3.2其它不足之处

(1)靠机械方式调节进气阀,使供气量无法连续调节,当用气量不断变化时,供气压力不可避免地产生较大幅度的波动,

用气精度达不到工艺要求。再加上频繁调节进气阀,会加速进气阀的磨损,增加维修量和维修成本。

(2)频繁采用打开和关闭放气阀,放气阀的耐用性得不到保障。

4、恒压供气控制方案的设计

针对原有供气控制方式存在的诸多问题,经过上述分析,应用变频调速技术进行恒压供气。通过压力变送器采集实际压力P送给PID智能调速器,与压力设定值P0作比较,并根据差值的大小按既定的PID控制模式进行运算,产生控制信号送变频调速器VVVF,通过变频器控制电机的工作频率与转速,从而使实际压力P始终接近设定压力P0。

同时,该方案可增加工频与变频切换功能,并保留原有的控制和保护系统,另外,采用该方案后,空压机电机从静止到旋转工作可由变频器来启动,实现了软启动,避免了启动冲击电流和启动给空压机带来的机械冲击。

5、技术指标和配置

磁场定向矢量控制,电机变量完全解耦,电流闭环。采用美国TI公司最新款高性能32位电机控制专用DSP,高速完成复杂准确的控制算法,国内首家产品化应用。

调速精度:0.01HZ

调速范围:0.5-600.00HZ

冲击负载:180%电机额定转矩,2秒内不跳脱。

低频转矩:0.5Hz,150%额定转矩输出。

150%额定转矩加速和减速。

内置多功能组合数字PID调节器。

内置标准485数据接口。

可编程开关量输入端口:8位,输出端口:2位,。

可编程继电器输出端口:1路,常开/常闭可选。

可编程模拟量输入端口:4通道,输出端口:1通道。

电压可设定电源:1路。

端子控制电源:1路。

独立风道、无触点软启动开关、低电感直流母线排高可靠性设计。

6、改造效果

(1)整套改造装置并不改变空压机原有控制原理,也就是说原空压机系统保护装置依然有效。并且工频/变频切换采用了电气及机械双重联锁,从而大大的提高了系统的安全、可靠性。

(2)空压机改造工程安装完毕后,一次试车成功,运行稳定,空压机振动和噪声大减低。

(3)除缓冲缸压力在部分频率时增大0.2公斤外,油压、油温及各点的检测数据均在安全数值内被优化。

(4)变频改造后,起动为软起动,运行时无卸载和加载冲击电流现象,空压机本身的机械性冲击大大减小。

(5)在保证管网供气的情况下,电流大大降低,基本不出现满载现象,一般在40Hz左右,和以前相比,节电率在30%以上,约10个月可以收回投资。

(6)空压机、供配电设备及机械设备因供气稳定,维修量大大减小,综合效益明显。

(7)改造后空压机的运行安全、可靠,同时达到了用气的工艺要求。

篇2:变频器在空冷器节能改造中的应用

变频器在空冷器节能改造中的应用

摘要:介绍了变频器在垫江分厂酸气空冷器节能技术改造中的.应用,并对改造后取得的效果进行了评估和分析.作 者:范锐    王学英    彭云    Fan Rui    Wang Xueying    Peng Yun  作者单位:中石油西南油气田公司重庆天然气净化总厂垫江分厂 期 刊:石油与天然气化工  PKU  Journal:CHEMICAL ENGINEERING OF OIL AND GAS 年,卷(期):, 37(4) 分类号:X7 关键词:变频器    节电    技术改造   

篇3:高压变频器在电厂水泵节能改造上的应用

1 引言

采用新型高压大功率电力电子器件、直接“高-高”方式的高压变频器,具有体积小、效率高、结构简单、运行可靠等特点,变频器装置采用不可控24脉冲移相整流和全控器件进行开关调制,具有很高的输入侧功率因数、优良的调速性能和转矩控制性能。高压变频器通过改变电动机运行频率,在很宽的转速范围内进行高效率的转速调节,可以取得很好的节电效果,在风机和水泵的节能改造上已经得到广泛验证。

国电双鸭山发电厂3、4号机为210MW火电机组,和3、4号机组配备有6台6kV/570kW灰浆泵电机,电机型号JS512-8,额定电流69A,额定转速730r/min。其中,6#灰浆泵是二级泵,和5#灰浆泵配合使用。在安装变频器之前,6#灰浆泵是根据前池液面的高度决定启、停电机。这样就存在两方面问题:一方面为了适应生产工艺要求,需要每天根据前池液位和冲灰管的需要不断切换、启停电机,前池液位高度得不到很好控制,而且频繁工频启动电机对电机造成很大冲击; 另一方面存在节流损失,造成电能的浪费。为了进一步优化灰浆泵运行工况,节省电能,所以对6#灰浆泵电机进行高压变频改造。

6#灰浆泵电机在高压变频器改造之后,通过调整6#灰浆泵变频器的运行频率(电机转速)来调整前池液面的高度,这样5#灰浆泵可以一直在最佳效率下工频运行,从而减少了操作6#灰浆泵开关的分合次数,减小了电机工频启动造成的冲击,进一步优化了生产工艺,并且节省了电能。

2 灰浆泵运行工艺和变频改造技术方案

2.1 6#灰浆泵运行情况及变频改造技术方案

(1) 在灰浆泵运行现场,变频器到电机之间的高压电缆经常发生单相对地放电或单相直接接地的情况。在这种情况下,要保证不能损坏变频器,并且变频器要能发出报警停机信号以便现场人员及时处理。因此,要求变频器输出能承受单相接地的能力,相应变频器的输出滤波器电容中性点不能直接接地,而是需要通过电容接地。

(2) 由于6#灰浆泵属于二级泵,所以在启动6#灰浆泵变频器运行之前,5#一级灰浆泵通常已经在运行,将会推动6#灰浆泵电机运转,变频器相当于飞车启动。所以变频器启动时需实时检测电机运行频率,根据该运行频率带动电机启动。

(3) 6#灰浆泵变频运行要求能对前池液位高度闭环控制,自动调节电机的转速。

(4) 由于灰浆泵运行时,在前池液位很低的时候有可能造成负荷过大甚至堵转的情况,因此要求变频器有过载能力以及过流保护措施。

综合上述因素,从目前国内、外主要的两种高压变频器拓扑结构中,选择基于IGCT的三电平中性点箝位的拓扑结构。三电平拓扑结构具有以下优点:开关功率器件数少、IGCT开关电流大、过流能力强、结构简单、可靠性高、适合负载冲击较大的应用场合。

在控制方面,灰浆泵前池液位设置压力式水位传感器,将测量得到水位高度信号,变换为4~20mA标准信号,由电流环接口送给变频器; 变频器计算出当前水位与控制水位之间的偏差,通过变频器内置的数字PID调节器改变变频器的输出频率,调节电动机的转速,进而控制灰浆泵前池液位的高度。

2.2 三电平中点箝位电路原理结构图

基于IGCT的三电平中性点箝位的高压变频器结构简单,主体由整流器、逆变器和滤波器组成。如图1所示,整流器采用24脉冲不控整流,由移相15°的24 脉波移相整流变压器和四重三相整流桥构成,这样可以满足对输入端的电流谐波要求,

直流环节由共模电抗、IGCT保护及充电限流电阻和直流电容(C1、 C2)构成。

三电平逆变器由di/dt吸收电路(由阳极电抗及嵌位电路组成)和12个IGCT组件构成的三电平逆变桥组成。

三电平结构的变频器需要拖动6kV电机,所以变频器直流母线电压需要10kV。实际运行时,两个处于关断状态的功率组件需要承受10kV的电压,这样每个组件要承受5kV。在主开关功率器件IGCT工作耐压只有4.5kV的条件下,需要采用两只串联的方式组成一个功率组件。

变频器内置输出滤波器由三相滤波电抗(La、Lb、Lc)和三相滤波电容(Ca、Cb、Cc、Cn)构成。滤波器使变频器输出到电机的电压和电流波形更加接近正弦波,而不需要电动机降容使用。

高压变频器内部采用无熔断器结构,电路的主保护主要由保护IGCT来实现,其动作时间在μs级。

2.3 新一代高压变频器控制系统的改进

我公司第一代变频器采用工控机进行信号处理,控制的实时性得不到保证。由于变频器要采用优化的PWM控制算法控制电机,需要主控系统控制器具有更高的运行速度和处理能力、更大的存储器和外部信号处理端口、具备浮点运算的能力。因此,新一代的变频器控制器选用浮点数字信号处理器DSP和大规模集成电路的 FPGA相结合的方案,DSP主要负责采集的信息和运算处理,FPGA根据处理结果转化为相应的控制脉冲,控制实时性大大提高。图2是新一代高压变频器主控板的硬件框图,它与第一代控制器相比,更能适应高性能的矢量控制算法的要求。

3 II期6#灰浆泵高压变频器现场调试运行和节能分析

3.1 变频器系统的控制调试

灰浆泵的流量是根据机组的负荷大小和冲灰工艺需求控制的,水流量的变化较大,有时呈阶梯状特性,水位波动比较大。水位压力式传感器需要选择合适的测量点,否则会因为水池内水流因素和水面波动引起测量的不稳定性。经过现场测试,选择了水流变化不大的靠池壁位置。经过调试,建立了一个合适的模型和PID控制参数,通过闭环跟踪水位变化,稳定控制前池液面的高度,优化了生产工艺。

另外,变频器还可以选择运行在开环状态,通过电厂DCS信号控制变频器的输出频率。

3.2 变频器节能分析

II期6#灰浆泵进行变频改造的一个重要原因是节约电能。电机变频运行节能的原理在许多资料均有论述,这里不做讨论。通过II期6#灰浆泵的工频旁路运行和变频运行的实际数据来说明变频的节能效果。

根据以上数据,采用变频运行后,24h可节约电量9380-6360=3020kWh。采用变频器后节能32%。由以上实际运行数据可以看出:电机变频运行不仅满足了工艺要求,同时能节约大量电能。经过几个月的连续运行,II期6#灰浆泵的变频改造后,节能效果显著。灰浆泵属于火电机组的公用设备,年运行时间长,可以为电厂节约15~30%左右的能源。

4 结束语

双鸭山电厂II期灰浆泵经过变频改造后,优化了灰浆泵的运行状况和生产工艺,更好地稳定了前池液位的高度,实现了闭环自动控制,同时节约了大量电能,节能效果明显。高压变频器的控制系统和控制技术发展很快,对电机更好性能的控制需要性能更高的主控系统平台。虽然新一代控制系统的高压变频器首先运用到风机、水泵的变频驱动上,但它比以前更可靠、更能提高高压变频器的控制性能。

篇4:高压变频器在煤矿主井提升机改造中的应用

1.引言

随着电力电子技术的飞速发展,高、低压变频调速技术已发展成一种成熟稳定的技术,在各个生产环节,交流电机变频调速系统以其体积小、低维护量、优异的调速性能等诸多优点在逐步替代传统的直流调速系统,现已经成为电机驱动的发展趋势,成为电机节能高效运行的有效手段,

煤矿地面的大动力设备主要包括:主井提升机(或主运输皮带机)、副井提升机、主通风机、压风机等高压大功率用电设备。因此,电机的节能经济运行应从高压大功率设备的变频改造着手进行。尤其煤矿的立井主提升机因其每天约20多小时连续运行是煤矿生产中的主要耗能设备,对其进行变频改造、节能经济运行允为必要。

2.主井提升机的技术参数和调速现状

目前,国内还有很多矿井的主井提升机采用交流异步电动机的转子串电阻方式进行工作。起主井提升系统主要包含异步电动机、电控、调速电阻、辊简、箕斗、钢绳等组成。以下就以某煤矿主井提升机改造项目为例,对主井提升机改造进行探讨和研究。

某煤矿主立井提升机目前的调速方式为转子串电阻调速,采用接触器控制电阻的投切,加速时间长达约20秒左右;减速爬行至停车时间长达29秒左右,加速时电机电流持续接近100A耗能严重,

且起动时电机的冲击电流大大超过电机额定电流。因此,在对该主井提升机进行了变频改造。

2.1主立井提升机参数

目前,主立井提升系统是双钩8.8吨箕斗缠绕式提升机,其调速系统是交流6k V/630k W双机驱动的绕线电机串电阻调速系统。

2.2串电阻调速方式存在的固有缺陷和问题

1)转子回路串接电阻,消耗电能造成巨大的能源浪费;

2)电阻只能分级切换,实现的是有级调速,设备运行不平稳易引起电气及机械冲击;对电机轴承、钢丝绳、减速器齿轮等造成巨大冲击,威胁系统的机械安全;

3)低速转矩小,转差功率大,启动电流和换档电流冲击大;

4)中高速运行振动大;制动不安全不可靠;

5)司机的开车熟练程度和责任心完全影响提升时间、电机电流,尤其夜班司机易疲倦,存在安全隐患;

6)线绕电机转子因为工作温度高容易开焊,滑环存在接触不良问题,容易引起设备故障;

7)设备维护工作量大、维护费用高;

8)2台电机分别串接三相转子电阻体积庞大,发热严重使工作环境恶化,夏季使环境温度高达60℃以上,导致工作环境恶劣;

9)电机的功率因数低,无功损耗较大。

篇5:变频调速器在注塑机节能改造中的应用

1 引言

近几年塑料行业发展越来越迅速,其中注塑行业也正迎来一个飞速发展的机遇,但同时同行业间的竞争也日渐激烈,各厂家除了重视产品质量、品牌竞争外,也越来越重视生产成本的控制,从注塑机工艺过程知道,在注塑成型产品成本中电能量消耗成本占了很大的比例,因而能否有效减少电能损耗受到各注塑机厂家和用户关注。随着变频调速技术的推广,变频调速在传动控制和节能领域已日渐得到广泛应用,尤其在泵类负载场合采用变频控制节能效果显著,本文以康沃注塑机专用变频器为例介绍了注塑机变频改造可行性和改造中常出现的问题及处理方法,举例说明了注塑机变频改造节电效果及收回情况。

2 注塑机变频改造可行性

2.1 节能改造的提出

目前市场上的各类注塑机约90%以上是采用液压传动和电液比例控制方式,事实上采用电液阀控(即高压节流)控制模式注塑机工作时存在很大的能量浪费,一般一个产品的注塑成型过程如图1。

各个过程所需的速度和压力因不同工艺而不同,即所需的液压油流量不同,因而注塑机整个动作过程对油泵电机来说是个变负载过程,在定量泵注塑机液压系统中,油泵电机始终是以恒定转速提供恒定流量的液压油,各个动作中相应多余的液压油则通过溢流阀回流,从而造成电能的浪费,据统计由电液阀控模式造成电能损耗高达36~68%,根据注塑机设备工艺油泵电机耗电占整个设备耗电比例高达65~80%,因而对阀控电液模式进行节能改造具有很大潜力。

2.2节能改造原理

泵类负载工作特性可知泵的流量与转速成比例关系,泵的扬程与转速成平方关系,泵电机轴功率与转速的立方关系,如下公式所示:

其中:q为流量; n为转速; h为扬程。

原有注塑机系统采用阀门控制,当流量由qa减少到qb时由于管阻特性,工作点由a点转移b点,消耗的功率与0qbbhb成正比,若采用变频控制这时因阀门全开,其管理特性不变,工作点由a点转移到c点,消耗的功率与0qbchc成正比,从图2可知采用变频调速比采用阀门控制节能,且随着转速的降低电机功率成立方关系减少,如果能根据注塑工艺适时地调节油泵电机转速即可达到节能目的。

目前三相异步电动机大多采用变频调速,由电机同步转速公式:

n=60(1-s)f/p

其中:s为转差率; f为供电频率; p极对数

由上式知当改变电源频率便可改变电机转速,因而采用注塑机比例流量阀及比例压力阀的控制信号同步控制油泵马达的变频器,使油泵电机的转速与注塑机工作所需的压力、流量成正比,从而使溢流阀的回流量减到最小,液压系统输出功率与注塑机生产所需功率相匹配,便可达到节能目的,据统计其单机节电率可达 25%~65%。

3 康沃变频器的应用

3.1康沃注塑机专用变频器的特点

康沃注塑机专用变频器(cvf-zs系列)是在通用变频器(cvf-g2系列)的基础上根据注塑机工作特性专门设计的变频调速器,通过对阀控电流、电压信号的采集,经cpu处理后对油泵电机进行相应的调速,从而满足注塑机工艺要求,它具有以下特点:

(1) 具有适合注塑机专用的频率给定信号通道

通用变频器的频率给定信号标准为0~10v电压信号或4~20ma电流信号,但注塑机专用变频器的具有0~1a/10v信号接收通道,康沃zs系列变频器可接入0~1a电流信号,而不需要另外加装信号转换电路。

(2) 过载能力强、响应速度快

一般注塑产品的周期相对较短,从10几秒到几分钟,一个成型产品从开模到合模各个过程动作要求迅速,采用变频控制时油泵电机负载频繁变化,这就要求变频器有很强的过载能力,康沃zs系列变频器根据阀控信号进行快速升降速,加减速时间可达0.5s~1s。

康沃注塑机专用变频器根据注塑的工艺要求设计,已在海天、震雄等品牌注塑机改造中得以成功应用。

3.2 变频改造电路

注塑机变频改造时采用:变频 工频控制方式,其控制柜主电路由电度表、zs变频器和工频旁路接触器等构成,控制电路由工频/变频切换开关、启动、复位开关、指示灯等构成。

(1) 变频控制柜主电路

如图3示,采用工频旁路目的是为了在变频器出故障时可直接切换到工频运行,而不影响生产,

图3中zd为断路器,k1、k2、k3为接触器,sb3为故障复位按钮。在改造注塑机时仍保留注塑机原有控制电路中的星-三角转换电路,这样可方便改造同时保持注塑原来的控制特性。

(2) 变频控制柜控制电路

如图4所示。

图4中sb1为工频/变频转换开关,选用三级开关;sb2为变频器启动按钮;l1为总电源指示灯;l2为工频运行指示灯;l3变频运行指示灯,l4为变频器故障指示灯,其故障信号由变频器ta、tc输出;km1、km2变频运行接触器;km3为工频运行接触器。

3.3 变频主要参数设置

以康沃cvf-zs-4t0150变频器在注塑机中应用为例,采用比例流量 比例压力信号两路信号控制,主要参数设定如表1所示。

康沃第二代注塑机专用变频器在第一代机型的基础上增加了两路信号比较、信号放大等功能更加满足注塑机不同的工艺要求。

4 调试中常出现的问题及处理方法

4.1调试前注意事项

注塑机变频节能电气改造相对比较简单,但在改造前应详细了解注塑机工况,熟悉注塑机工艺流程,调试时应注意以下事项:安装前查清注塑机原有电路接线方式,包括主电路和控制电路;仔细观察注塑机工频运行是否正常,油泵马达是否经常处于过载状态;根据注塑机的模具及注塑工艺观察注塑机节电改造的潜能;控制信号线路注意正负极性不要接反;信号线与主回路线要分开布线等。

4.2调试常见问题及处理方法

由于注塑机工艺的特殊性,在改造中会遇到各种故障,以下为在注塑机变频改造中常遇到的问题及处理方法。

(1) 变频器频率无变化

由于变频器采用注塑机阀控电流信号进行调速,变频器运行后出现频率显示为0.0(有的变频器显示为0)现象,其主要原因为信号极性接反;信号取错;信号接线端口与参数设定不符;注塑机辅助电源故障等,出现这种故障应先查明注塑机阀控制的类别是电流信号、电压信号还是脉冲控制信号(部分机型),及信号正负极性是否与变频器控制端子对应。

(2) 油泵噪音大

变频器运行后有些注塑机会发出异常的噪音,这时应判断噪声源在何处,是来自电机还是油泵,若为油泵的噪音则可能原因有:注塑机液压油过少,有空气吸入;注塑机滤油器或油路阻塞;注塑机油泵叶片磨损较严重;遇到以情况应先检查注塑机油泵,排除故障后方可运行,另外当注塑处于低速高压工作状态时,也会出现油泵噪音异常情况,这时适当提高速度信号。

(3) 温度控制干扰

注塑机变频器改造中常遇见的问题是改造后因干扰注塑机不能正常运行,注塑机加热单元采用热电偶检测温度,这种检测元件容易受谐波干扰,从而造成注塑机温度显示和控制不准确,这时可从以下方面排除干扰:尽量缩短变频器与注塑机电动机之间的连线,动力线用金属软管套装,动力线与温度检测线不要靠近走线;在变频器近端主回路线缆加装电抗器或磁环;变频器可靠接地;或给注塑机内部温控电偶供电电源加阻容滤波电路,如图5所示。

其中a 为热电偶端;b 接温度控制板,处理时即在温度检测(热电偶)线路中对称地加入以上阻、容元器件以消除干扰。

5 节能实例及收回

深圳横岗镇某电子厂主要生产吸尘器,其吸尘器外壳采用亿利达e-140品牌注塑机注塑成型,注塑机油泵电机为三相异步电机,其功率为15kw,采用康沃cvf-zs-4t0150变频器进行节能改造,经测试其节能情况如表2所示。

表2 cvf-zs-4t0150变频器节能情况

以每天工作22h,每月工作28天计算,每月节电1478.4kwh,该电子厂所在工业区电价为0.7元/kwh,一台变频节能控制柜投资为9300元,使用约9个月后便收回投资,同时采用变频改后实现电机软启动;减少机械冲击;降低液压油温等,该厂自去年初改造以来系统运行稳定。

6 结束语

随着变频技术的成熟,变频器在注塑机改造中日渐得以广泛应用,实践证明注塑机采用变频控制节能效果明显,值得推广和应用。

篇6:高压变频器在空压机上的应用

一、引言

空压机在工业生产中有着广泛地应用,它担负着为所有气动元件,包括各种气动阀门,提供气源的职责。因此它运行的好坏直接影响生产工艺。空压机的种类主要有活塞式、螺杆式、离心式,但其供气控制方式几乎都是采用进气口调节与加、卸载控制方式的控制模式。

首先来了解一下空压机的基本工作原理。空压机结构复杂,运转时间长,配备的功率大。以活塞式空压机为例,在空压机工作过程中,活塞在气缸内作往复运动,周期性地改变缸内的容积,从而使气缸内气体容积发生变化,并与气缸内气阀相应的开启和闭合动作相配合,通过吸气、压缩、排气等动作,将自然气体或较低压力的气体(一级缸气体)升压,最终输出到储气罐内。为了满足设备的用气需求,储气罐内气体必须保持一定的压力,以作缓冲作用,加上设备自身的原因,空气压力变化幅度必然很大,通常采用切断进气的调节方式来改变排气量。理想状态是供气压力刚好满足需求,保持压力不变,实际上通过进气门控制起来不太理想,通常是空压机排气量大于实际用气量,空压机保持恒速运转,此时储气罐内气体越积越多,直到压力上升到设定的最高压力。通常采取以下两种方法解决高压问题:一是使空压机卸荷运行,保持运转但不产生气体,此时空压机消耗的功率一般在额定功率的30%左右,全是无用功;二是停止空压机的运行,这样看起来是节约了电能消耗,但是大功率电动机的启动会带来诸多问题,而且空气储存的容积有限,当气压低于下限压力值时,空压机再次以额定转速给储气罐加压,直到压力达到上限压力而停止运行,如此循环,

二、空压机加、卸载供气控制方式存在的电能浪费

2(1)交流异步电动机的转速公式为:

n=60f(1-s)/p

其中 n―电机转速 f―运行频率;

p―电机极对数 s―转差率;

2(2) 空压机加、卸载供气控制方式存在的问题

2.1 能耗分析

加、卸载控制方式使得压缩气体的压力在Pmin~Pmax之间来回变化。Pmin是最低压力值,即能够保证用户正常工作的最低压力。一般情况下,Pmax、Pmin之间关系可以用下式来表示:

Pmax=(1+δ)Pmin

δ是一个百分数,其数值大致在15%~30%之间。

在加、卸载供气控制方式下的空压机,所浪费的能量主要在2个部分:

(1) 加载时的电能消耗

在压力达到最小值后,原控制方式决定其压力会继续上升直到最大压力值。在加压过程中,一定要向外界释放更多的热量,从而导致电能损失。另一方面,高于压力最大值的气体在进入气动元件前,其压力需要经过减压阀减压,这一过程同样是一个耗能过程。另外,空压机本身通过检测压力,自动调节进气门,一部分能量消耗在进气门上。

(2) 卸载时电能的消耗

当压力达到压力最大值时,空压机通过如下方法来降压卸载:关闭进气阀使电机处于空转状态,同时将分离罐中多余的压缩空气通过放空阀放空。这种调节方法要造成很大的能量浪费。据我们测算,空压机卸载时的能耗约占空压机满载运行时的10%~25%(这还是在卸载时间所占比例不大的情况下),

换言之,该空压机 20%的时间处于空载状态,在作无用功。很明显在自动调节进气门与加卸载供气控制方式下,空压机电机存在很大的节能空间。

2.2 其它不足之处

(1)靠机械方式调节进气阀,使供气量无法连续调节,当用气量不断变化时,供气压力不可避免地产生较大幅度的波动。用气精度达不到工艺要求。再加上频繁调节进气阀,会加速进气阀的磨损,增加维修量和维修成本。

(2) 频繁采用打开和关闭放气阀,放气阀的耐用性得不到保障。

三、恒压供气控制方案的设计

电机型号:Y450-2

功率因数:0.87

额定电压:10KV

额定电流:35.1A

额定功率:500KW

额定转速:2975rpm

空气压缩机

额定流量:120 m3/min

额定压力:0.3MPa

变频器: 深圳市科陆变频器有限公司CL2700-10-0630-9QY高压变频器

控制模式:PID恒压控制

在以上PID恒压控制模式下,我们根据用户现场的需要,把压力设定值P0设定为0.25 Mpa,当用户生产用气量加大,管网压力低于0.25 Mpa时,变频器输出频率增加,电机转速加快,空气压缩量增大,压力随之上升;当生产用气量减少,管网压力高于0.25 Mpa时,变频器输出频率减小,电机转速减慢,空气压缩量减小,压力随之下降,始终使压力保持在0.25Mpa左右。

四、改造效益

4.1 工频运行参数测量

电机运行参数:电压:10KV, 有功功率385KW,年运行时间约7200小时,电费0.8元/度;

空压机运行参数:进口阀门开度40%,出口阀门开度100%,出气口压力:0.25MPa。

4.2 变频运行参数测量

电机运行参数:运行频率46HZ, ,有功功率330KW,年运行时间约7200小时,电费0.8元/度;

空压机运行参数: 进口阀门开度80%,出口阀门开度100%,出气口压力0.25 Mpa。

4.3 经济效益

节约电功率:385-330=55(kW)

节电率:(385-330)÷385=14.28%

每年节约电能:55×7200÷10000=39.6(万度)

每年节约电费:39.6×0.8=31.68(万元)

4.4 附加经济效益

1) 解决压力波动幅度大,提高精度。

2) 解决阀门磨损成本和降低维修量。

篇7:普传变频器在空压机上的应用

空压机,全名为空气压缩机,是一种工矿企业中最常用的空气动力提供设备,通常,空压机分为螺杆式空压机、活塞式空压机等。

空压机内部结构

空气压缩机恒压供气使用变频器与压力控制构成闭环控制系统,使压力波动减少到1.5%,降低噪音,减少振动,保证设备稳定运行。使用变频器后,空压机可在任何压力下随意启动,打破了以前不允许带压启动的规定,启动电流较以前大大降低。使用变频器后,节电率普遍达到20% 左右,它较风机,水泵类负载节电率低。但电机功率都比较大,其节电量值较大,经济效益比较显著。总之,采用恒压供气智能控制系统后,不但可节约 30~40%的电力费用,延长压缩机的使用寿命,并可实现“恒压供气”的目的,提高生产效率和产品质量。

现场用45KW空压机

深圳市某电子有限公司成立于2005年7月,总投资4000多万元港币,公司以FPC柔性电路板贴片加工为主,现有全新贴片线11条,其中中速线4 条,中高速线3条,高速线4条,并设有SMT手印、手摆和手机组装线。依托广州总部AKM(安捷利电子实业有限公司)和ZTE(中兴通讯股份有限公司)的强大财务支持,公司现已发展为拥有占地面积3000多平米,在职员工400余人的高新技术产业龙头企业,挤身于深圳SMT柔性电路板贴片行业前列。

根据厂方要求,我司产品要达到以下几点要求:

1. 现场为37KW空压机,用我司PS7800 055G3节能柜。在工频启动时,要保留星三角降压启动方式。

2. 需要加装24VDC变压器给压力传感器供电源,传感器输出4-20MA模拟信号,需将其串联在电源与变频器之间。

3. 需要加电流表,以便用户观察节电效果。

4. 现场的走线工艺:保证无误,美观。

5. 现场在楼顶,如下雨,容易漏水到柜子里,保证机器正常工作。

现场的PS7800 045F3 电机环保节能器

我司从以下几方面满足客户需求:

1. 要保留星三角降压启动,

将3相380V电源线直接接到PS柜的输入端,将柜子的输出接到星三角启动第一个吸合的交流接触器前端,将FWD与COM接到星三角启动最后吸合的交流接触器的常开触点,则工频启动时星三角降压启动有效。另外,需要从柜子的输入端给星三角启动的三个交流接触器和空压机操作面板提供工作电压。

2. 压力传感器需要24VDC工作电压,变压器为220V变直流24V。从柜子的变频指示灯两端取220V电压,通过变压器给压力传感器供电。接法:24V正极接传感器正极;传感器负极接变频器的VF端子;变频器的V3端子接24V负极。利用变频器的PID功能实现现场的应用要求。

3. 加装普通电流表,串联在电源与PS柜之间,三进三出。

4. 现场的走线工艺。从线管里穿线、走线。

5. 订作了一个底座,防止下雨时雨水漏入设备内部。

参数设置如下:

F04=7 PID调节方式控制频率运行

F05=3 端子控制变频器运行

F09=35 加速时间为35秒

F10=35 减速时间为35秒

F16=25 下限频率为25秒

F44=2 在上电时先检测电机运行速度

F72 P02=1 反馈信号选择4~20mA电流信号

P04=67 键盘给定反馈值为量程的67%

P06=0.300 PID积分时间为0.3秒

P07=400 PID比例增益为70%

P08=0 PID故障检测时间为0

其他参数为出厂值设置。

此工况变频器的日常保养和维护、注意事项等:

1. 注意电磁干扰。

2. 注意环境温度。

3. 注意灰尘、粉尘的进入。

4. 注意雨天防水漏入、流入设备内部。

HIVERT高压变频器在矿山排废系统中的应用分析

阿尔法变频器在炼铁高炉上的应用

变频器在T6160镗床电气改造中的解决方案

车间设备管理工作总结

车间设备管理的年终工作总结

煤矿机电科半年工作总结

汽车销售实习总结范文3000字

动力车间年终总结

电气工程实习报告

动力车间最美安全卫士演讲稿

浅谈变频器在空压机节能改造中的应用
《浅谈变频器在空压机节能改造中的应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【浅谈变频器在空压机节能改造中的应用(共7篇)】相关文章:

上半年技术设备管理工作总结2023-04-28

企业节能降耗措施2023-11-01

煤矿机电科年度工作总结2023-01-08

设备管理工作总结2023-03-18

机电科员工年工作总结2023-05-10

毕业总结3000字2022-08-11

动力车间年末工作总结2023-05-08

电气工程师简历自我评价2023-03-02

设备工作总结2023-11-16

机修电工年度工作总结3000字2023-06-21

点击下载本文文档