物理高中知识点总结

时间:2023-07-17 07:56:50 其他总结 收藏本文 下载本文

物理高中知识点总结(推荐14篇)由网友“菜里没有一点盐”投稿提供,这次小编给大家整理过的物理高中知识点总结,供大家阅读参考,也相信能帮助到您。

物理高中知识点总结

篇1:物理知识点高中总结

高中物理知识点总结如下:

1.物理学是一门研究物理现象的科学,是其他自然科学的基础。

2.物理学是科学技术的基础,也是其他自然科学的推动者。

3.物理学不仅是一门科学,而且是一种文化,一种人类积累和传播知识的体系。

4.物理学是建立在观察、实验和逻辑推理的基础上。

5.物理学是探索未知的学问,它需要毅力、勇气和献身精神。

6.物理学是一门关于物质的运动和变化的科学。

7.物理学是关于自然界的和谐与和谐的学科。

8.物理学是关于宇宙的知识。

9.物理学是关于生命的科学。

10.物理学是一种文化和价值观。

以上就是高中物理知识点中关于物理学知识点的总结,希望能对您有所帮助。

篇2:物理知识点高中总结

1.运动学

基本概念:速度、加速度、位移

基本公式:速度公式、位移公式、加速度公式

2.动力学

基本概念:力、质量、加速度

基本公式:牛顿第二定律、动量定理、动量守恒定律

3.热学

基本概念:温度、热量、内能

基本公式:热力学第一定律、热力学第二定律、热力学第三定律

4.电磁学

基本概念:电场、磁场、电荷

基本公式:库仑定律、安培定则、法拉第电磁感应定律

5.光学

基本概念:光线、折射、反射

基本公式:折射率、折射定律、干涉原理

6.原子物理

基本概念:原子、能级、跃迁

基本公式:波尔理论、爱因斯坦质能方程、光电效应方程

以上是高中物理知识点总结,希望对您有所帮助。

篇3:物理知识点高中总结

1.运动学

匀变速直线运动

1.平均速度V=X/t(定义式)

2.速度V=V初+at

3.速度位移公式V²=2ax

4.对加速度理解记住三句话:

①是状态量瞬时速度②是过程量

③决定加速程度

2.动力学

动力学三大规律

1.牛顿第一定律,也叫惯性定律。

2.牛顿第二定律,动力加速度产生动力做功。

3.牛顿第三定律,也叫作用力和反作用力定律。

3.功和能

1.功的定义:力和力的方向上发生位移的乘积叫作功。

2.恒力做功:W=FScosα(α为力与位移的夹角)。

3.功率定义:功与完成这些功所用时间的比值叫作功率。

4.动能定理:合外力做的功等于物体动能的变化。

以上只是高中物理知识点总结,更详细的知识点请咨询专业人士。

篇4:物理知识点高中总结

1.运动学

匀变速直线运动

1.平均速度V平=X/t(定义式)

2.速度V=V初+at

3.速度变化量△V=V-V0

4.加速度a=V/t

2.动力学

1.动力学习题不忘用公式

2.动力学第二定律

3.力的合成与分解

3.静力学

1.静力学研究力和力矩

2.汇交力系与力偶系

3.约束和约束力

4.平面汇交力系平衡方程

5.平面力偶系平衡方程

6.力的平移

4.动力学

1.动力学研究动力和力

2.动力学三大定律

3.动量定理

4.动量守恒定律

5.反冲运动

6.碰撞

5.机械波

1.机械波的产生

2.机械波的传播

3.机械波的频率

6.机械振动

1.简谐运动

2.阻尼振动

3.受迫振动

4.共振

7.分子动理论

1.物质是由大量分子组成的

2.分子永不停息地做无规则运动

3.分子间有相互作用的引力和斥力

8.热力学定律

1.热力学第一定律

2.热力学第二定律

3.热力学第三定律

4.热力学第四定律

此外,高中物理的知识点还有很多,例如电学、光学、原子物理、相对论等。需要学生掌握的知识点非常多,但只要有兴趣并付出努力,就一定能够学好高中物理。

篇5:高中人教版物理知识点总结

1.磁场

(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场.(2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.

(3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用.

(4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体.

(5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向.

2.磁感线

(1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.

(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.

(3)几种典型磁场的磁感线的分布:

①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.

②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.

③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.

④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.

3.磁感应强度

(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/(A?m).

(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向.

(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比.

(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.

4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:

(1)地磁场的N极在地球南极附近,S极在地球北极附近.

(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.

(3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.

5.安培力

(1)安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度.

(2)安培力的方向由左手定则判定.

(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零.

6.洛伦兹力

(1)洛伦兹力的大小f=qvB,条件:v⊥B.当v∥B时,f=0.

(2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功.

(3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定.

(4)在磁场中静止的电荷不受洛伦兹力作用.

7.带电粒子在磁场中的运动规律

在带电粒子只受洛伦兹力作用的条件下(电子、质子、α粒子等微观粒子的重力通常忽略不计),

(1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动.

(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动.①轨道半径公式:r=mv/qB②周期公式:T=2πm/qB

8.带电粒子在复合场中运动

(1)带电粒子在复合场中做直线运动

①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解.

②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解.

(2)带电粒子在复合场中做曲线运动

①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动.处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解.

②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解.

③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“最大”、“最高”“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解.

篇6:高中人教版物理知识点总结

一、质点的运动

(1)------直线运动

1)匀变速直线运动

1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as

3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t

7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动

1.初速度Vo=0 2.末速度Vt=gt

3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

注:

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动

1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)

5.往返时间t=2Vo/g (从抛出落回原位置的时间)

注:

(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动、万有引力

1)平抛运动

1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的2)力的合成与分解

1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

3.合力大小范围:|F1-F2|≤F≤|F1+F2|

4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

四、动力学(运动和力)

1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

3.牛顿第三运动定律:F=-F?{负号表示方向相反,F、F?各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

5.超重:FN>G,失重:FN

6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

五、振动和波(机械振动与机械振动的传播)

1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

3.受迫振动频率特点:f=f驱动力

4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕

动能保持不变,向心力不做功,但动量不断改变。

篇7:物理知识点总结

第一章声现象知识归纳

1.声音的发生:由物体的振动而产生。

振动停止,发声也停止。

2.声音的传播:声音靠介质传播。

真空不能传声。

通常我们听到的声音是靠空气传来的。

3.声速:在空气中传播速度是:340米/秒。

声音在固体传播比液体快,而在液体传播又比空气体快。

4.利用回声可测距离:S=1/2vt

5.乐音的三个特征:音调、响度、音色。

(1)音调:是指声音的高低,它与发声体的频率有关系。

(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。

6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。

7.可听声:频率在20Hz~0Hz之间的声波:超声波:频率高于20000Hz的声波;次声波:频率低于20Hz的声波。

8.超声波特点:方向性好、穿透能力强、声能较集中。

具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。

9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。

一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。

它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。

第二章物态变化知识归纳

1.温度:是指物体的冷热程度。

测量的工具是温度计,温度计是根据液体的热胀冷缩的原理制成的。

2.摄氏温度(℃):单位是摄氏度。

1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。

3.常见的温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。

体温计:测量范围是35℃至42℃,每一小格是0.1℃。

4.温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。

5.固体、液体、气体是物质存在的三种状态。

6.熔化:物质从固态变成液态的过程叫熔化。

要吸热。

7.凝固:物质从液态变成固态的过程叫凝固。

要放热。

8.熔点和凝固点:晶体熔化时保持不变的温度叫熔点。

晶体凝固时保持不变的温度叫凝固点。

晶体的熔点和凝固点相同。

9.晶体和非晶体的重要区别:晶体都有一定的熔化温度(即熔点),而非晶体没有熔点。

10.熔化和凝固曲线图:

11.(晶体熔化和凝固曲线图)(非晶体熔化曲线图)

12.上图中AD是晶体熔化曲线图,晶体在AB段处于固态,在BC段是熔化过程,吸热,但温度不变,处于固液共存状态,CD段处于液态;而DG是晶体凝固曲线图,DE段于液态,EF段落是凝固过程,放热,温度不变,处于固液共存状态,FG处于固态。

13.汽化:物质从液态变为气态的过程叫汽化,汽化的方式有蒸发和沸腾。

都要吸热。

14.蒸发:是在任何温度下,且只在液体表面发生的,缓慢的汽化现象。

15.沸腾:是在一定温度(沸点)下,在液体内部和表面同时发生的剧烈的汽化现象。

液体沸腾时要吸热,但温度保持不变,这个温度叫沸点。

16.影响液体蒸发快慢的因素:(1)液体温度;(2)液体表面积;(3)液面上方空气流动快慢。

17.液化:物质从气态变成液态的过程叫液化,液化要放热。

使气体液化的方法有:降低温度和压缩体积。

(液化现象如:“白气”、雾、等)

18.升华和凝华:物质从固态直接变成气态叫升华,要吸热;而物质从气态直接变成固态叫凝华,要放热。

19.水循环:自然界中的水不停地运动、变化着,构成了一个巨大的水循环系统。

水的循环伴随着能量的转移。

第三章光现象知识归纳

1.光源:自身能够发光的物体叫光源。

2.太阳光是由红、橙、黄、绿、蓝、靛、紫组成的。

3.光的三原色是:红、绿、蓝;颜料的三原色是:红、黄、蓝。

4.不可见光包括有:红外线和紫外线。

特点:红外线能使被照射的物体发热,具有热效应(如太阳的热就是以红外线传送到地球上的);紫外线最显著的性质是能使荧光物质发光,另外还可以灭菌。

1.光的直线传播:光在均匀介质中是沿直线传播。

2.光在真空中传播速度最大,是3×108米/秒,而在空气中传播速度也认为是3×108米/秒。

3.我们能看到不发光的物体是因为这些物体反射的光射入了我们的眼睛。

4.光的反射定律:反射光线与入射光线、法线在同一平面上,反射光线与入射光线分居法线两侧,反射角等于入射角。

(注:光路是可逆的)

5.漫反射和镜面反射一样遵循光的反射定律。

6.平面镜成像特点:(1)平面镜成的是虚像;(2)像与物体大小相等;(3)像与物体到镜面的距离相等;(4)像与物体的连线与镜面垂直。

另外,平面镜里成的像与物体左右倒置。

7.平面镜应用:(1)成像;(2)改变光路。

8.平面镜在生活中使用不当会造成光污染。

球面镜包括凸面镜(凸镜)和凹面镜(凹镜),它们都能成像。

具体应用有:车辆的后视镜、商场中的反光镜是凸面镜;手电筒的反光罩、太阳灶、医术戴在眼睛上的反光镜是凹面镜。

第四章光的折射知识归纳

光的折射:光从一种介质斜射入另一种介质时,传播方向一般发生变化的现象。

光的折射规律:光从空气斜射入水或其他介质,折射光线与入射光线、法线在同一平面上;折射光线和入射光线分居法线两侧,折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不改变。

(折射光路也是可逆的)

凸透镜:中间厚边缘薄的透镜,它对光线有会聚作用,所以也叫会聚透镜。

凸透镜成像:

(1)物体在二倍焦距以外(u>2f),成倒立、缩小的实像(像距:f

(2)物体在焦距和二倍焦距之间(f2f)。

如幻灯机。

(3)物体在焦距之内(u

光路图:

6.作光路图注意事项:

(1).要借助工具作图;(2)是实际光线画实线,不是实际光线画虚线;(3)光线要带箭头,光线与光线之间要连接好,不要断开;(4)作光的反射或折射光路图时,应先在入射点作出法线(虚线),然后根据反射角与入射角或折射角与入射角的关系作出光线;(5)光发生折射时,处于空气中的那个角较大;(6)平行主光轴的光线经凹透镜发散后的光线的反向延长线一定相交在虚焦点上;(7)平面镜成像时,反射光线的反向延长线一定经过镜后的像;(8)画透镜时,一定要在透镜内画上斜线作阴影表示实心。

7.人的眼睛像一架神奇的照相机,晶状体相当于照相机的镜头(凸透镜),视网膜相当于照相机内的胶片。

8.近视眼看不清远处的景物,需要配戴凹透镜;远视眼看不清近处的景物,需要配戴凸透镜。

9.望远镜能使远处的物体在近处成像,其中伽利略望远镜目镜是凹透镜,物镜是凸透镜;开普勒望远镜目镜物镜都是凸透镜(物镜焦距长,目镜焦距短)。

10.显微镜的目镜物镜也都是凸透镜(物镜焦距短,目镜焦距长)。

篇8:物理知识点总结

第五章物体的运动

1.长度的测量是最基本的测量,最常用的工具是刻度尺。

2.长度的主单位是米,用符号:m表示,我们走两步的距离约是1米,课桌的高度约0.75米。

3.长度的单位还有千米、分米、厘米、毫米、微米,它们关系是:

1千米=1000米=103米;1分米=0.1米=10-1米

1厘米=0.01米=10-2米;1毫米=0.001米=10-3米

1米=106微米;1微米=10-6米。

4.刻度尺的正确使用:

(1).使用前要注意观察它的零刻线、量程和最小刻度值;(2).用刻度尺测量时,尺要沿着所测长度,不利用磨损的零刻线;(3).读数时视线要与尺面垂直,在精确测量时,要估读到最小刻度值的下一位;(4).测量结果由数字和单位组成。

5.误差:测量值与真实值之间的差异,叫误差。

误差是不可避免的,它只能尽量减少,而不能消除,常用减少误差的方法是:多次测量求平均值。

6.特殊测量方法:

(1)累积法:把尺寸很小的物体累积起来,聚成可以用刻度尺来测量的数量后,再测量出它的总长度,然后除以这些小物体的个数,就可以得出小物体的长度。

如测量细铜丝的直径,测量一张纸的厚度。

(2)平移法:方法如图:(a)测硬币直径;(b)测乒乓球直径;

(3)替代法:有些物体长度不方便用刻度尺直接测量的,就可用其他物体代替测量。

如(a)怎样用短刻度尺测量教学楼的高度,请说出两种方法?

(b)怎样测量学校到你家的距离?(c)怎样测地图上一曲线的长度?(请把这三题答案写出来)

(4)估测法:用目视方式估计物体大约长度的方法。

7.机械运动:物体位置的变化叫机械运动。

8.参照物:在研究物体运动还是静止时被选作标准的物体(或者说被假定不动的物体)叫参照物。

9.运动和静止的相对性:同一个物体是运动还是静止,取决于所选的参照物。

10.匀速直线运动:快慢不变、经过的路线是直线的运动。

这是最简单的机械运动。

11.速度:用来表示物体运动快慢的物理量。

12.速体在单位时间内通过的路程。

公式:s=vt

速度的单位是:米/秒;千米/小时。

1米/秒=3.6千米/小时

13.变速运动:物体运动速度是变化的运动。

14.平均速度:在变速运动中,用总路程除以所用的时间可得物体在这段路程中的快慢程度,这就是平均速度。

用公式:;日常所说的速度多数情况下是指平均速度。

15.根据可求路程:和时间:

16.人类发明的计时工具有:日晷→沙漏→摆钟→石英钟→原子钟。

第六章物质的物理属性知识归纳

1.质量(m):物体中含有物质的多少叫质量。

2.质量国际单位是:千克。

其他有:吨,克,毫克,1吨=103千克=106克=109毫克(进率是千进)

3.物体的质量不随形状,状态,位置和温度而改变。

4.质量测量工具:实验室常用天平测质量。

常用的天平有托盘天平和物理天平。

5.天平的正确使用:(1)把天平放在水平台上,把游码放在标尺左端的零刻线处;(2)调节平衡螺母,使指针指在分度盘的中线处,这时天平平衡;(3)把物体放在左盘里,用镊子向右盘加减砝码并调节游码在标尺上的位置,直到横梁恢复平衡;(4)这时物体的质量等于右盘中砝码总质量加上游码所对的刻度值。

6.使用天平应注意:(1)不能超过最大称量;(2)加减砝码要用镊子,且动作要轻;(3)不要把潮湿的物体和化学药品直接放在托盘上。

7.密度:某种物质单位体积的质量叫做这种物质的密度。

用ρ表示密度,m表示质量,V表示体积,密度单位是千克/米3,(还有:克/厘米3),1克/厘米3=1000千克/米3;质量m的单位是:千克;体积V的单位是米3。

8.密度是物质的一种特性,不同种类的物质密度一般不同。

9.水的密度ρ=1.0×103千克/米3

10.密度知识的应用:(1)鉴别物质:用天平测出质量m和用量筒测出体积V就可据公式:求出物质密度。

再查密度表。

(2)求质量:m=ρV。

(3)求体积:

11.物质的物理属性包括:状态、硬度、密度、比热、透光性、导热性、导电性、磁性、弹性等。

第七章从粒子到宇宙

1.分子动理论的内容是:(1)物质由分子组成的,分子间有空隙;(2)一切物体的分子都永不停息地做无规则运动;(3)分子间存在相互作用的引力和斥力。

2.扩散:不同物质相互接触,彼此进入对方现象。

3.固体、液体压缩时分子间表现为斥力大于引力。

固体很难拉长是分子间表现为引力大于斥力。

4.分子是原子组成的,原子是由原子核和核外电子

组成的,原子核是由质子和中子组成的。

5.汤姆逊发现电子(18);卢瑟福发现质子(19);查德威克发现中子(1932年);盖尔曼提出夸克设想(1961年)。

6.加速器是探索微小粒子的有力武器。

7.银河系是由群星和弥漫物质集会而成的一个庞大天体系统,太阳只是其中一颗普通恒星。

8.宇宙是一个有层次的天体结构系统,大多数科学家都认定:宇宙诞生于距今150亿年的一次大爆炸,这种爆炸是整体的,涉及宇宙全部物质及时间、空间,爆炸导致宇宙空间处处膨胀,温度则相应下降。

9.(一个天文单位)是指地球到太阳的距离。

10.(光年)是指光在真空中行进一年所经过的距离。

第八章力知识归纳

1.什么是力:力是物体对物体的作用。

2.物体间力的作用是相互的。

(一个物体对别的物体施力时,也同时受到后者对它的力)。

3.力的作用效果:力可以改变物体的运动状态,还可以改变物体的形状。

(物体形状或体积的改变,叫做形变。)

4.力的单位是:牛顿(简称:牛),符合是N。

1牛顿大约是你拿起两个鸡蛋所用的力。

5.实验室测力的工具是:弹簧测力计。

6.弹簧测力计的原理:在弹性限度内,弹簧的伸长与受到的拉力成正比。

7.弹簧测力计的用法:(1)要检查指针是否指在零刻度,如果不是,则要调零;(2)认清最小刻度和测量范围;(3)轻拉秤钩几次,看每次松手后,指针是否回到零刻度,(4)测量时弹簧测力计内弹簧的轴线与所测力的方向一致;⑸观察读数时,视线必须与刻度盘垂直。

(6)测量力时不能超过弹簧测力计的量程。

8.力的三要素是:力的大小、方向、作用点,叫做力的三要素,它们都能影响力的作用效果。

9.力的示意图就是用一根带箭头的线段来表示力。

具体的画法是:

(1)用线段的起点表示力的作用点;

(2)延力的方向画一条带箭头的线段,箭头的方向表示力的方向;

(3)若在同一个图中有几个力,则力越大,线段应越长。

有时也可以在力的示意图标出力的大小,

10.重力:地面附近物体由于地球吸引而受到的力叫重力。

重力的方向总是竖直向下的。

11.重力的计算公式:G=mg,(式中g是重力与质量的比值:g=9.8牛顿/千克,在粗略计算时也可取g=10牛顿/千克);重力跟质量成正比。

12.重垂线是根据重力的方向总是竖直向下的原理制成。

13.重心:重力在物体上的作用点叫重心。

14.摩擦力:两个互相接触的物体,当它们要发生或已经发生相对运动时,就会在接触面是产生一种阻碍相对运动的力,这种力就叫摩擦力。

15.滑动摩擦力的大小跟接触面的粗糙程度和压力大小有关系。

压力越大、接触面越粗糙,滑动摩擦力越大。

16.增大有益摩擦的方法:增大压力和使接触面粗糙些。

减小有害摩擦的方法:(1)使接触面光滑和减小压力;(2)用滚动代替滑动;(3)加润滑油;(4)利用气垫。

(5)让物体之间脱离接触(如磁悬浮列车)。

篇9:物理知识点总结

第十六章电转换磁知识归纳

1.磁性:物体吸引铁、镍、钴等物质的性质。

2.磁体:具有磁性的物体叫磁体。

它有指向性:指南北。

3.磁极:磁体上磁性最强的部分叫磁极。

①任何磁体都有两个磁极,一个是北极(N极);另一个是南极(S极)

②磁极间的作用:同名磁极互相排斥,异名磁极互相吸引。

4.磁化:使原来没有磁性的物体带上磁性的过程。

5.磁体周围存在着磁场,磁极间的相互作用就是通过磁场发生的。

6.磁场的基本性质:对入其中的磁体产生磁力的作用。

7.磁场的方向:在磁场中的某一点,小磁针静止时北极所指的方向就是该点的磁场方向。

8.磁感线:描述磁场的强弱和方向而假想的曲线。

磁体周围的磁感线是从它北极出来,回到南极。

(磁感线是不存在的,用虚线表示,且不相交)

9.磁场中某点的磁场方向、磁感线方向、小磁针静止时北极指的方向相同。

10.地磁的北极在地理位置的南极附近;而地磁的南极则在地理位置的北极附近。

(地磁的南北极与地理的南北极并不重合,它们的交角称磁偏角,这是我国学者:沈括最早记述这一现象)

11.奥斯特实验证明:通电导线周围存在磁场。

12.安培定则:用右手握螺线管,让四指弯向螺线管中电流方向,则大拇指所指的那端就是螺线管的北极(N极)。

13.安培定则的易记易用:入线见,手正握;入线不见,手反握。

大拇指指的一端是北极(N极)。

14.通电螺线管的性质:①通过电流越大,磁性越强;②线圈匝数越多,磁性越强;③插入软铁芯,磁性大大增强;④通电螺线管的极性可用电流方向来改变。

15.电磁铁:内部带有铁芯的螺线管就构成电磁铁。

16.电磁铁的特点:①磁性的有无可由电流的通断来控制;②磁性的强弱可由改变电流大小和线圈的匝数来调节;③磁极可由电流方向来改变。

17.电磁继电器:实质上是一个利用电磁铁来控制的开关。

它的作用可实现远距离操作,利用低电压、弱电流来控制高电压、强电流。

还可实现自动控制。

18.电磁感应:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生电流,这种现象叫电磁感应,产生的电流叫感应电流。

19.产生感生电流的条件:①电路必须闭合;②只是电路的一部分导体在磁场中;③这部分导体做切割磁感线运动。

20.感应电流的方向:跟导体运动方向和磁感线方向有关。

21.电磁感应现象中是机械能转化为电能。

22.发电机的原理是根据电磁感应现象制成的。

交流发电机主要由定子和转子。

23.高压输电的原理:保持输出功率不变,提高输电电压,同时减小电流,从而减小电能的损失。

24.磁场对电流的作用:通电导线在磁场中要受到磁力的作用。

是由电能转化为机械能。

应用是制成电动机。

25.通电导体在磁场中受力方向:跟电流方向和磁感线方向有关。

26.直流电动机原理:是利用通电线圈在磁场里受力转动的原理制成的。

27.交流电:周期性改变电流方向的电流。

28.直流电:电流方向不改变的电流。

第十七章电磁波与现代通信知识归纳

1.信息:各种事物发出的有意义的消息。

人类历史上,信息和信息传播活动经历了五次巨大的变革是:①语言的诞生;②文字的诞生;③印刷术的诞生;④电磁波的应用;⑤计算机技术的应用。

(要求会正确排序)

2.早期的信息传播工具:烽火台,驿马,电报机,电话等。

3.人类储存信息的工具有:①牛骨﹑竹简、木牍,②书,③磁盘﹑光盘。

4.所有的波都在传播周期性的运动形态。

例如:水和橡皮绳传播的是凸凹相间的运动形态,而弹簧和声波传播的是疏密相间的运动形态。

5.机械波是振动形式在介质中的传播,它不仅传播了振动的形式,更主要是传播了振动的能量。

当信息加载到波上后,就可以传播出去。

6.有关描述波的性质的物理量:①振幅A:波源偏离平衡位置的最大距离,单位是m.②周期T:波源振动一次所需要的时间,单位是s.③频率f:波源每秒类振动的次数,单位是Hz.④波长λ:波在一个周期类传播的距离,单位是m.

7.波的传播速度v与波长、频率的关系是:λ.v=——=λfT

8.电磁波是在空间传播的周期性变化的电磁场,由于电磁场本身具有物质性,因此电磁波传播时不需要介质。

9.电磁波谱(按波长由小到大或频率由高到低排列):γ射线、X射线、紫外线、可见光(红橙黄绿蓝靛紫)、红外线﹑微波﹑无线电波。

(要了解它们各自应用)。

10.人类应用电磁波传播信息的历史经历了以下变化:①传播的信息形式从文字→声音→图像;②传播的信息量由小到大;③传播的距离由近到远④传播的速度由慢到快。

11.现代“信息高速公路”的两大支柱是:卫星通信和光纤通信,其中光纤通信优点是:容量大、不受外界电磁场干扰、不怕潮湿、不怕腐蚀,互联网是信息高速公路的主干线,互联网用途有:①发送电子邮件;②召开视频会议;③网上发布新闻;④进行远程登陆,实现资源共享等。

12.电视广播、移动通信是利用微波传递信号的。

第十八章能源与可持续发展知识归纳

1.人类开发利用能源的历史:火→化石能源→电能→核能。

2.能源的种类很多,从不同角度可以分为:一次能源和二次能源;可再生能源和不可再生能源;常规能源(传统能源)和新能源;清洁能源和非清洁能源等。

3.核能获取的途径有两条:重核的裂变和轻核的聚变(聚变也叫热核反应)。

原子弹和目前人类制造的核电站是利用重核的裂变释放能量的,而氢弹则是利用轻核的聚变释放能量的。

4.核电站主要组成包括:核反应堆、热交换器、汽轮机和发电机等。

5.太阳能是由不断发生的核聚变产生的,地球上除核能、地热能和潮汐能以外的所有的能量,几乎都来自太阳。

人类利用太阳能的三种方式是:①光热转换(太阳能热水器);②光电转换(太阳能电池);③光化转换(绿色植物)。

6.能量的转化和守恒定律:能量既不会凭空消灭,也不会凭空产生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而在转化或转移的过程中,其总量保持不变。

7.能量的转移和转化具有方向性。

输出的有用能量

转换的能量

8.能量转换装置的效率=——————————×100%

输入的总能量.

篇10:物理知识点总结

第九章压强和浮力知识归纳

1.压力:垂直作用在物体表面上的力叫压力。

2.压强:物体单位面积上受到的压力叫压强。

3.压强公式:P=F/S,式中p单位是:帕斯卡,简称:帕,1帕=1牛/米2,压力F单位是:牛;受力面积S单位是:米2

4.增大压强方法:(1)S不变,F↑;(2)F不变,S↓(3)同时把F↑,S↓。

而减小压强方法则相反。

5.液体压强产生的原因:是由于液体受到重力。

6.液体压强特点:(1)液体对容器底和壁都有压强,(2)液体内部向各个方向都有压强;(3)液体的压强随深度增加而增大,在同一深度,液体向各个方向的压强相等;(4)不同液体的压强还跟密度有关系。

7.液体压强计算公式:,(ρ是液体密度,单位是千克/米3;g=9.8牛/千克;h是深度,指液体自由液面到液体内部某点的竖直距离,单位是米。)

8.根据液体压强公式:可得,液体的压强与液体的密度和深度有关,而与液体的体积和质量无关。

9.证明大气压强存在的实验是马德堡半球实验。

10.大气压强产生的原因:空气受到重力作用而产生的,大气压强随高度的增大而减小。

11.测定大气压强值的实验是:托里拆利实验。

12.测定大气压的仪器是:气压计,常见气压计有水银气压计和无液气压计(金属盒气压计)。

13.标准大气压:把等于760毫米水银柱的大气压。

1标准大气压=760毫米汞柱=1.013×105帕=10.34米水柱。

14.沸点与气压关系:一切液体的沸点,都是气压减小时降低,气压增大时升高。

15.流体压强大小与流速关系:在流体中流速越大地方,压强越小;流速越小的地方,压强越大。

1.浮力:一切浸入液体的物体,都受到液体对它竖直向上的力,这个力叫浮力。

浮力方向总是竖直向上的。

(物体在空气中也受到浮力)

2.物体沉浮条件:(开始是浸没在液体中)

方法一:(比浮力与物体重力大小)

(1)F浮G,上浮(3)F浮=G,悬浮或漂浮

方法二:(比物体与液体的密度大小)

(1)F浮G,上浮(3)F浮=G,悬浮。

(不会漂浮)

3.浮力产生的原因:浸在液体中的物体受到液体对它的向上和向下的压力差。

4.阿基米德原理:浸入液体里的物体受到向上的浮力,浮力大小等于它排开的液体受到的重力。

(浸没在气体里的物体受到的浮力大小等于它排开气体受到的重力)

5.阿基米德原理公式:

6.计算浮力方法有:

(1)称量法:F浮=G—F,(G是物体受到重力,F是物体浸入液体中弹簧秤的读数)

(2)压力差法:F浮=F向上-F向下

(3)阿基米德原理:

(4)平衡法:F浮=G物(适合漂浮、悬浮)

7.浮力利用

(1)轮船:用密度大于水的材料做成空心,使它能排开更多的水。

这就是制成轮船的道理。

(2)潜水艇:通过改变自身的重力来实现沉浮。

(3)气球和飞艇:充入密度小于空气的气体。

第十章力和运动知识归纳

1.牛顿第一定律:一切物体在没有受到外力作用的时候,总保持静止状态或匀速直线运动状态。

(牛顿第一定律是在经验事实的基础上,通过进一步的推理而概括出来的,因而不能用实验来证明这一定律)。

2.惯性:物体保持运动状态不变的性质叫惯性。

牛顿第一定律也叫做惯性定律。

3.物体平衡状态:物体受到几个力作用时,如果保持静止状态或匀速直线运动状态,我们就说这几个力平衡。

当物体在两个力的作用下处于平衡状态时,就叫做二力平衡。

4.二力平衡的条件:作用在同一物体上的两个力,如果大小相等、方向相反、并且在同一直线上,则这两个力二力平衡时合力为零。

5.物体在不受力或受到平衡力作用下都会保持静止状态或匀速直线运动状态。

第十一章简单机械和功知识归纳

1.杠杆:一根在力的作用下能绕着固定点转动的硬棒就叫杠杆。

2.什么是支点、动力、阻力、动力臂、阻力臂?

(1)支点:杠杆绕着转动的点(o)

(2)动力:使杠杆转动的力(F1)

(3)阻力:阻碍杠杆转动的力(F2)

(4)动力臂:从支点到动力的作用线的距离(L1)。

(5)阻力臂:从支点到阻力作用线的距离(L2)

3.杠杆平衡的条件:动力×动力臂=阻力×阻力臂,或写作:F1L1=F2L2或写成。

这个平衡条件也就是阿基米德发现的杠杆原理。

4.三种杠杆:

(1)省力杠杆:L1>L2,平衡时F1

特点是省力,但费距离。

(如剪铁剪刀,铡刀,起子)

(2)费力杠杆:L1F2。

特点是费力,但省距离。

(如钓鱼杠,理发剪刀等)

(3)等臂杠杆:L1=L2,平衡时F1=F2。

特点是既不省力,也不费力。

(如:天平)

5.定滑轮特点:不省力,但能改变动力的方向。

(实质是个等臂杠杆)

6.动滑轮特点:省一半力,但不能改变动力方向,要费距离。(实质是动力臂为阻力臂二倍的杠杆)

7.滑轮组:使用滑轮组时,滑轮组用几段绳子吊着物体,提起物体所用的力就是物重的几分之一。

1.功的两个必要因素:一是作用在物体上的力;二是物体在力的方向上通过的距离。

2.功的计算:功(W)等于力(F)跟物体在力的方向上通过的距离(s)的乘积。

(功=力×距离)

3.功的公式:W=Fs;单位:W→焦;F→牛顿;s→米。

(1焦=1牛·米)。

4.功的原理:使用机械时,人们所做的功,都等于不用机械而直接用手所做的功,也就是说使用任何机械都不省功。

5.斜面:FL=Gh斜面长是斜面高的几倍,推力就是物重的几分之一。

(螺丝、盘山公路也是斜面)

6.机械效率:有用功跟总功的比值叫机械效率。

计算公式:P有/W=η

7.功率(P):单位时间(t)里完成的功(W),叫功率。

计算公式:。

单位:P→瓦特;W→焦;t→秒。

(1瓦=1焦/秒。

1千瓦=1000瓦)

第十二章机械能和内能知识归纳

1.一个物体能够做功,这个物体就具有能(能量)。

2.动能:物体由于运动而具有的能叫动能。

3.运动物体的速度越大,质量越大,动能就越大。

4.势能分为重力势能和弹性势能。

5.重力势能:物体由于被举高而具有的能。

6.物体质量越大,被举得越高,重力势能就越大。

7.弹性势能:物体由于发生弹性形变而具的能。

8.物体的弹性形变越大,它的弹性势能就越大。

9.机械能:动能和势能的统称。

(机械能=动能+势能)单位是:焦耳

10.动能和势能之间可以互相转化的。

方式有:动能重力势能;动能弹性势能。

11.自然界中可供人类大量利用的机械能有风能和水能。

1.内能:物体内部所有分子做无规则运动的动能和分子势能的总和叫内能。

(内能也称热能)

2.物体的内能与温度有关:物体的温度越高,分子运动速度越快,内能就越大。

3.热运动:物体内部大量分子的无规则运动。

4.改变物体的内能两种方法:做功和热传递,这两种方法对改变物体的内能是等效的。

5.物体对外做功,物体的内能减小;

外界对物体做功,物体的内能增大。

6.物体吸收热量,当温度升高时,物体内能增大;

物体放出热量,当温度降低时,物体内能减小。

7.所有能量的单位都是:焦耳。

8.热量(Q):在热传递过程中,传递能量的多少叫热量。

(物体含有多少热量的说法是错误的)

9.比热(c):单位质量的某种物质温度升高(或降低)1℃,吸收(或放出)的热量叫做这种物质的比热。

10.比热是物质的一种属性,它不随物质的体积、质量、形状、位置、温度的改变而改变,只要物质相同,比热就相同。

11.比热的单位是:焦耳/(千克·℃),读作:焦耳每千克摄氏度。

12.水的比热是:C=4.2×103焦耳/(千克·℃),它表示的物理意义是:每千克的水当温度升高(或降低)1℃时,吸收(或放出)的热量是4.2×103焦耳。

13.热量的计算:

①Q吸=cm(t-t0)=cm△t升(Q吸是吸收热量,单位是焦耳;c是物体比热,单位是:焦/(千克·℃);m是质量;t0是初始温度;t是后来的温度。

②Q放=cm(t0-t)=cm△t降

1.热值(q):1千克某种燃料完全燃烧放出的热量,叫热值。

单位是:焦耳/千克。

2.燃料燃烧放出热量计算:Q放=qm;(Q放是热量,单位是:焦耳;q是热值,单位是:焦/千克;m是质量,单位是:千克。

3.利用内能可以加热,也可以做功。

4.内燃机可分为汽油机和柴油机,它们一个工作循环由吸气、压缩、做功和排气四个冲程。

一个工作循环中对外做功1次,活塞往复2次,曲轴转2周。

5.热机的效率:用来做有用功的那部分能量和燃料完全燃烧放出的能量之比,叫热机的效率。

的热机的效率是热机性能的一个重要指标

6.在热机的各种损失中,废气带走的能量最多,设法利用废气的能量,是提高燃料利用率的'重要措施。

篇11:物理知识点总结

第十三章电路初探知识归纳

1.电源:能提供持续电流(或电压)的装置。

2.电源是把其他形式的能转化为电能。

如干电池是把化学能转化为电能。

发电机则由机械能转化为电能。

3.有持续电流的条件:必须有电源和电路闭合。

4.导体:容易导电的物体叫导体。

如:金属,人体,大地,酸、碱、盐的水溶液等。

5.绝缘体:不容易导电的物体叫绝缘体。

如:橡胶,玻璃,陶瓷,塑料,油,纯水等。

6.电路组成:由电源、导线、开关和用电器组成。

7.电路有三种状态:(1)通路:接通的电路叫通路;(2)断路:断开的电路叫开路;(3)短路:直接把导线接在电源两极上的电路叫短路。

8.电路图:用符号表示电路连接的图叫电路图。

9.串联:把电路元件逐个顺次连接起来的电路,叫串联。

(电路中任意一处断开,电路中都没有电流通过)

10.并联:把电路元件并列地连接起来的电路,叫并联。

(并联电路中各个支路是互不影响的)

1.电流的大小用电流强度(简称电流)表示。

2.电流I的单位是:国际单位是:安培(A);常用单位是:毫安(mA)、微安(A)。

1安培=103毫安=106微安。

3.测量电流的仪表是:电流表,它的使用规则是:①电流表要串联在电路中;②接线柱的接法要正确,使电流从“+”接线柱入,从“-”接线柱出;③被测电流不要超过电流表的量程;④绝对不允许不经过用电器而把电流表连到电源的两极上。

4.实验室中常用的电流表有两个量程:①0~0.6安,每小格表示的电流值是0.02安;②0~3安,每小格表示的电流值是0.1安。

1.电压(U):电压是使电路中形成电流的原因,电源是提供电压的装置。

2.电压U的单位是:国际单位是:伏特(V);常用单位是:千伏(KV)、毫伏(mV)、微伏(V)。

1千伏=103伏=106毫伏=109微伏。

3.测量电压的仪表是:电压表,它的使用规则是:①电压表要并联在电路中;②接线柱的接法要正确,使电流从“+”接线柱入,从“-”接线柱出;③被测电压不要超过电压表的量程;

4.实验室中常用的电压表有两个量程:①0~3伏,每小格表示的电压值是0.1伏;②0~15伏,每小格表示的电压值是0.5伏。

5.熟记的电压值:

①1节干电池的电压1.5伏;②1节铅蓄电池电压是2伏;③家庭照明电压为220伏;④对人体安全的电压是:不高于36伏;⑤工业电压380伏。

1.电阻(R):表示导体对电流的阻碍作用。

(导体如果对电流的阻碍作用越大,那么电阻就越大,而通过导体的电流就越小)。

2.电阻(R)的单位:国际单位:欧姆(Ω);常用的单位有:兆欧(MΩ)、千欧(KΩ)。

1兆欧=103千欧;1千欧=103欧。

3.决定电阻大小的因素:导体的电阻是导体本身的一种性质,它的大小决定于导体的材料、长度、横截面积和温度。

(电阻与加在导体两端的电压和通过的电流无关)

4.变阻器:(滑动变阻器和电阻箱)

(1)滑动变阻器:

①原理:改变接入电路中电阻线的长度来改变电阻的。

②作用:通过改变接入电路中的电阻来改变电路中的电流和电压。

③铭牌:如一个滑动变阻器标有“50Ω2A”表示的意义是:最大阻值是50Ω,允许通过的最大电流是2A。

④正确使用:A.应串联在电路中使用;B.接线要“一上一下”;C.通电前应把阻值调至最大的地方。

(2)电阻箱:是能够表示出电阻值的变阻器。

第十四章欧姆定律知识归纳

1.欧姆定律:导体中的电流,与导体两端的电压成正比,与导体的电阻成反比。

2.公式:(I=U/R)式中单位:I→安(A);U→伏(V);R→欧(Ω)。

1安=1伏/欧。

3.公式的理解:①公式中的I、U和R必须是在同一段电路中;②I、U和R中已知任意的两个量就可求另一个量;③计算时单位要统一。

4.欧姆定律的应用:

①同一个电阻,阻值不变,与电流和电压无关,但加在这个电阻两端的电压增大时,通过的电流也增大。

(R=U/I)

②当电压不变时,电阻越大,则通过的电流就越小。

(I=U/R)

③当电流一定时,电阻越大,则电阻两端的电压就越大。

(U=IR)

5.电阻的串联有以下几个特点:(指R1,R2串联)

①电流:I=I1=I2(串联电路中各处的电流相等)

②电压:U=U1+U2(总电压等于各处电压之和)

③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR

④分压作用

⑤比例关系:电流:I1∶I2=1∶1

6.电阻的并联有以下几个特点:(指R1,R2并联)

①电流:I=I1+I2(干路电流等于各支路电流之和)

②电压:U=U1=U2(干路电压等于各支路电压)

③电阻:(总电阻的倒数等于各并联电阻的倒数和)如果n个阻值相同的电阻并联,则有1/R总=1/R1+1/R2

④分流作用:I1:I2=1/R1:1/R2

⑤比例关系:电压:U1∶U2=1∶1

第十五章电功和电热知识归纳

1.电功(W):电流所做的功叫电功,

2.电功的单位:国际单位:焦耳。

常用单位有:度(千瓦时),1度=1千瓦时=3.6×106焦耳。

3.测量电功的工具:电能表(电度表)

4.电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。

5.利用W=UIt计算电功时注意:①式中的W.U.I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。

6.计算电功还可用以下公式:W=I2Rt;W=Pt;W=UQ(Q是电量);

7.电功率(P):电流在单位时间内做的功。

单位有:瓦特(国际);常用单位有:千瓦

8.计算电功率公式:(式中单位P→瓦(w);W→焦;t→秒;U→伏(V);I→安(A)

9.利用计算时单位要统一,①如果W用焦、t用秒,则P的单位是瓦;②如果W用千瓦时、t用小时,则P的单位是千瓦。

10.计算电功率还可用右公式:P=I2R和P=U2/R

11.额定电压(U0):用电器正常工作的电压。

12.额定功率(P0):用电器在额定电压下的功率。

13.实际电压(U):实际加在用电器两端的电压。

14.实际功率(P):用电器在实际电压下的功率。

当U>U0时,则P>P0;灯很亮,易烧坏。

当U

当U=U0时,则P=P0;正常发光。

(同一个电阻或灯炮,接在不同的电压下使用,则有;如:当实际电压是额定电压的一半时,则实际功率就是额定功率的1/4。

例“220V100W”是表示额定电压是220伏,额定功率是100瓦的灯泡如果接在110伏的电路中,则实际功率是25瓦。)

15.焦耳定律:电流通过导体产生的热量,与电流的平方成正比,与导体的电阻成正比,与通电时间成正比。

16.焦耳定律公式:Q=I2Rt,(式中单位Q→焦;I→安(A);R→欧(Ω);t→秒。)

17.当电流通过导体做的功(电功)全部用来产生热量(电热),则有W=Q,可用电功公式来计算Q。

(如电热器,电阻就是这样的。)

1.家庭电路由:进户线→电能表→总开关→保险盒→用电器。

2.两根进户线是火线和零线,它们之间的电压是220伏,可用测电笔来判别。

如果测电笔中氖管发光,则所测的是火线,不发光的是零线。

3.所有家用电器和插座都是并联的。

而开关则要与它所控制的用电器串联。

4.保险丝:是用电阻率大,熔点低的铅锑合金制成。

它的作用是当电路中有过大的电流时,保险产生较多的热量,使它的温度达到熔点,从而熔断,自动切断电路,起到保险的作用。

5.引起电路中电流过大的原因有两个:一是电路发生短路;二是用电器总功率过大。

6.安全用电的原则是:①不接触低压带电体;②不靠近高压带电体。

在安装电路时,要把电能表接在干路上,保险丝应接在火线上(一根足够);控制开关应串联在干路。

篇12:物理知识点总结

电学基本要求:

1.会求解描述静电场的两个重要物理量:电场强度E和电势V。

2.掌握描述静电场的重要定理:高斯定理和安培环路定理(公式内容及物理意义)。

3.掌握导体的静电平衡及应用;介质的极化机理及介质中的高斯定理。主要公式:一、电场强度1.点电荷场强:Eq40r2er计算场强的方法(3种)1、点电荷场的场强及叠加原理

Qir点电荷系场强:E3i40ri连续带电体场强:E

rdQQ4r30(五步走积分法)(建立坐标系、取电荷元、写dE、分解、积分)

2、静电场高斯定理:表达式:EdSqes0物理意义:表明静电场中,通过任意闭合曲面的电通量(电场强度沿任意闭合曲面的面积分),等于该曲面内包围的电荷代数和除以。

0对称性带电体场强:(用高斯定理求解)EdSqes3、利用电场和电势关系:

UExx二、电势电势及定义:

1.电场力做功:AqUq00l2l1Edl

2.静电场安培环路定理:静电场的保守性质

表达式:Edl0l物理意义:表明静电场中,电场强度沿任意闭合路径的线积分为0。

B3.电势:UaEdl(Up00);电势差:UABEdl

aAp0电势的计算:

1.点电荷场的电势及叠加原理点电荷电势:Vq40rQi40ri点电荷系电势:Ui

dq40r连续带电体电势:VdV(四步走积分法)(建立坐标系、取电荷元、写dV、积分)2.已知场强分布求电势:定义法

v0VEdlEdr

lp三、静电场中的导体及电介质

1.弄清静电平衡条件及静电平衡下导体的性质

2.了解电介质极化机理,及描述极化的物理量电极化强度P,会用介质中的高斯定理,求对称或分区均匀问题中的D,E,P及界面

处的束缚电荷面密度。3.会按电容的定义式计算电容。

典型带电体系的场强均匀带电球面E0球面内典型带电体系的电势均匀带电球面Uq40REqr40r3球面外均匀带电无限长直线lnU20ar(U0)(a)均匀带电直线E(cos1cos2)4020r无限长:E均匀带电无限大平面E均匀带电无限大平面UEdd20xx

磁学恒定磁场(非保守力场)基本要求:

1.熟悉毕奥-萨伐尔定律的应用,会用右手螺旋法则求磁感应强度方向;

2.掌握描述磁场的两个重要定理:高斯定理和安培环路定理(公式内容及物理意义);并会用环路定理计算规则电流的磁感应强度;

3.会求解载流导线在磁场中所受安培力;

4.理解介质的磁化机理,会用介质中的环路定律计算H及B.

主要公式:

0Idler1.毕奥-萨伐尔定律表达式:dB4r2I(cos1cos2)4r01)有限长载流直导线,垂直距离r处磁感应强度:B(其中和分别是起点及终点的电流方向与到场点连线方向之间的夹角。)

12无限长载流直导线,垂直距离r处磁感应强度:BI02r半无限长载流直导线,过端点垂线上且垂直距离r处磁感应强度:

B0I4r02)圆形载流线圈,半径为R,在圆心O处:B0I2R0I4R半圆形载流线圈,半径为R,在圆心O处:B3)螺线管及螺绕环内部磁场自己看书,把公式记住2.磁场高斯定理:

0表达式:mBdS0(无源场)(因为磁场线是闭合曲线,从闭合曲面

s一侧穿入,必从另一侧穿出.)

物理意义:表明稳恒磁场中,通过任意闭合曲面的磁通量(磁场强度沿任意闭合曲面的面积分)等于0。

3.磁场安培环路定理:Bdl0Il(有旋场)

表达式:Bdl0Il物理意义:表明稳恒磁场中,磁感应强度B沿任意闭合路径的线积分,等于该路径内包围的电流代数和的倍。称真空磁导率

004.洛伦兹力及安培力

1)洛伦兹力:FqvB(磁场对运动电荷的作用力)

2)安培力:FIdlB(方向沿IdlB方向,或用左手定则判定)

l积分法五步走:1.建坐标系;2.取电流元Idl;3.写dFIdlBsin;4.分解;5.积分.

3)载流闭合线圈所受磁力矩:

M=mB(要理解磁矩的定义及意义)

5.介质中的磁场

1)介质的磁化机理及三种磁介质

2)有磁介质的安培环路定理:HdlIlHB电磁感应基本要求:

1.理解法拉第电磁感应定律和楞次定律的内容及物理意义;2.会求解感应电动势及动生电动势的大小和方向;了解自感及互感;

3.掌握麦克斯韦方程组及意义,了解电磁波。主要公式:

1.法拉第电磁感应定律:d,会用楞次定律判断感应电动势方

dt向。

Bdl(vBsin)dlcos2.动生电动势vll是v与B的夹角;是vB的方向与L方向的夹角.注:感应电动势的方向沿vB的方向,从低电势指向高电势。

B3.感生电动势及感生电场:E感dldS;

tLs4.麦克斯韦方程组及电磁波:

qi1EdSs00dV

VBdS0

sBEdldStLS变化的磁场产生电场

变化的电场产生磁场

波动光学

DHdlJ0dSdStLSS基本要求:

掌握杨氏双缝干涉、单缝衍射、劈尖干涉、光栅衍射公式;理解光程差的含义与半波损失发生条件及增透膜、增反膜原理;主要公式:

1.光程差与半波损失

光程差:几何光程乘以折射率之差:nr11n2r2

半波损失:当入射光从折射率较小的光疏介质投射到折射率较大的光疏密介质表面时,反射光比入射光有的相位突变,即光程发生的跃变。(若两

2束相干光中一束发生半波损失,而另一束没有,则附加的光程差;

2若两有或两无,则无附加光程差。)

2.杨氏双缝干涉:(D-缝屏距;d-双缝间距;k-级数)D明纹公式:xkk明d(2k1)D暗纹公式:xk暗2dD相邻条纹间距:xd条纹特征:明暗相间均匀等间距直条纹,中央为零级明纹。条纹间距

x与缝屏距

D成正比,与入射光波长成正比,与双缝间距d成反比。

3.会分析薄膜干涉

例如增透膜增反膜,劈尖牛顿环等

4.单缝衍射:(f-透镜焦距;a-单缝宽度;k-级数)

(2k1)(2k1)f明纹公式:asin,xk明22a暗纹公式:asink,xkfk暗af中央明纹宽度:l20af其它条纹宽度:la

条纹特征:明暗相间直条纹,中央为零级明纹,宽度是其它条纹宽度的两成反比。

5.衍射光栅:(dab为光栅常数,为衍射角)

光栅方程:(ab)sink,k0,1,21(a为透光部分,b不透光部分,d,N为每米刻痕数)N倍。条纹间距l与透镜焦距f成正比,与入射光波长成正比,与单缝宽度

光栅明纹公式:dsink,x2k明kfd

第K级光谱张角:

第K级光谱线宽度:xxxf(tgtg)

(dsink,dsink,400nm,紫光,760nm红光)条纹特征:条纹既有干涉又有衍射。6.光的偏振:(I为入射光强度,为两偏振化方向夹角)

1212111221

自然光通过偏振片:II0cos2马吕斯定律:I0偏振光通过偏振片:I20布儒斯特角:(i为入射角,为折射角)

niarctg20n1当入射角满足上述条件时,反射光为完全偏振光,且偏振化方向与入射面垂直;折射光为部分偏振光,且反射光线与折射光线垂直,即:i90

00量子物理基础

主要内容:

1.黑体辐射的实验规律不能从经典物理获得解释。普朗克提出了能量量子化假设,从而成功地解释了黑体辐射的实验规律,并导致了量力

学的诞生和许多近代技术。

量子概念:Eh

2.光电效应的实验规律无法用光的波动理论解释。爱因斯坦提出了光子假设。用爱因斯坦方程hν=mv2/2+w解释了实验规律。康普顿散

射也证明了光的量子性。

3.德布罗意波(物质波)假设:任何实物粒子和光子一样都具有波粒二象性。

当vc时,m用静质量;德布罗意关系式:hhPmv当vc时,m用动质量.Emc2h光子:hPmv4.波函数的统计诠释

微观粒子状态用波函数Ψ描述,波函数Ψ是概率幅,波函数的平方|Ψ|表示粒子在某点于某时刻出现的概率密度。微观粒子状态的演化用薛定谔方程描述。5.不确定关系:

xpxh其中:pxmvx2

(h6.6310,普朗克常数)

篇13:物理知识点总结

一、温度:

1、温度:温度是用来表示物体冷热程度的物理量;

注:热的物体我们说它的温度高,冷的物体我们说它的温度低,若两个物体冷热程度一样,它们的温度亦相同;我们凭感觉判断物体的冷热程度一般不可靠;

2、摄氏温度:

(1)温度常用的单位是摄氏度,用符号“C”表示;

(2)摄氏温度的规定:把一个大气压下,冰水混合物的温度规定为0℃;把一个标准大气压下沸水的温度规定为100℃;然后把0℃和100℃之间分成100等份,每一等份代表1℃。

(3)摄氏温度的读法:如“5℃”读作“5摄氏度”;“-20℃”读作“零下20摄氏度”或“负20摄氏度”

二、温度计

1、常用的温度计是利用液体的热胀冷缩的原理制造的;

2、温度计的构成:玻璃泡、均匀的玻璃管、玻璃泡总装适量的液体(如酒精、煤油或水银)刻度;

3、温度计的使用:

(1)使用前要:观察温度计的量程、分度值(每个小刻度表示多少温度),并估测液体的

温度,不能超过温度计的量程(否则会损坏温度计)

(2)测量时,要将温度计的玻璃泡与被测液体充分接触,不能紧靠容器壁和容器底部;

(3)读数时,玻璃泡不能离开被测液、要待温度计的示数稳定后读数,且视线要与温度

计中夜柱的上表面相平。

三、体温计:

1、用途:专门用来测量人体温的;

2、测量范围:35℃~42℃;分度值为0.1℃;

3、体温计读数时可以离开人体;

4、体温计的特殊构成:玻璃泡和直的玻璃管之间有极细的、弯的细管(缩口);

物态变化:物质在固、液、气三种状态之间的变化;固态、液态、气态在一定条件下可以相互转化。物质以什么状态存在跟物体的温度有关。

四、熔化和凝固:物质从固态变为液态叫熔化;从液态变为固态叫凝固。

1、物质熔化时要吸热;凝固时要放热;

2、熔化和凝固是可逆的两物态变化过程;

3、固体可分为晶体和非晶体;

(1)晶体:熔化时有固定温度(熔点)的物质;非晶体:熔化时没有固定温度的物质;

(2)晶体和非晶体的根本区别是:晶体有熔点(熔化时温度不变继续吸热),非晶体没有熔点(熔化时温度升高,继续吸热);(熔点:晶体熔化时的温度);

4、晶体熔化的条件:

(1)温度达到熔点;

(2)继续吸收热量;

5、晶体凝固的条件:

(1)温度达到凝固点;

(2)继续放热;

6、同一晶体的熔点和凝固点相同;

7、晶体的熔化、凝固曲线:

五、汽化和液化

1、物质从液态变为气态叫汽化;物质从气态变为液态叫液化;

2、汽化和液化是互为可逆的过程,汽化要吸热、液化要放热;

3、汽化可分为沸腾和蒸发;

(1)蒸发:在任何温度下都能发生,且只在液体表面发生的缓慢的汽化现象;

注:蒸发的快慢与

(A)液体温度有关:温度越高蒸发越快(夏天洒在房间的水比冬天干的快;在太阳下晒衣服快干);

(B)跟液体表面积的大小有关,表面积越大,蒸发越快(凉衣服时要把衣服打开凉,为了地下有积水快干,要把积水扫开);

(C)跟液体表面空气流动的快慢有关,空气流动越快,蒸发越快(凉衣服要凉在通风处,夏天开风扇降温);

(2)沸腾:在一定温度下(沸点),在液体表面和内部同时发生的剧烈的汽化现象;注:

(A)沸点:液体沸腾时的温度叫沸点;

(B)不同液体的沸点一般不同;

(C)液体的沸点与压强有关,压强越大沸点越高(高压锅煮饭)

(D)液体沸腾的条件:温度达到沸点还要继续吸热;

(3)沸腾和蒸发的区别和联系:

(A)它们都是汽化现象,都吸收热量

(B)沸腾只在沸点时才进行;蒸发在任何温度下都能进行;

(C)沸腾在液体内、外同时发生;蒸发只在液体表面进行;

(D)沸腾比蒸发剧烈;

(4)蒸发可致冷:夏天在房间洒水降温;人出汗降温;发烧时在皮肤上涂酒精降温;

(5)不同物体蒸发的快慢不同:如酒精比水蒸发的快;

4、液化的方法:

(1)降低温度;

(2)压缩体积(增大压强,提高沸点)如:氢的储存和运输;液化气;

六、升华和凝华

1、物质从固态直接变为气态叫升华;物质从气态直接变为固态叫凝华,升华吸热,凝华放热;

2、升华现象:樟脑球变小;冰冻的衣服变干;人工降雨中干冰的物态变化;

3、凝华现象:雪的形成;北方冬天窗户玻璃上的冰花(在玻璃的内表面)

七、云、霜、露、雾、雨、雪、雹、“白气”的形成

1、温度高于0℃时,水蒸汽液化成小水滴成为露;附在尘埃上形成雾;

2、温度低于0℃时,水蒸汽凝华成霜;

3、水蒸汽上升到高空,与冷空气相遇液化成小水滴,就形成云,大水滴就是雨;云层中还有大量的小冰晶、雪(水蒸汽凝华而成),小冰晶下落可熔化成雨,小水滴再与0℃冷空气流时,凝固成雹;

4、“白气”是水蒸汽与冷液化而成的

第五章电流和电路

一、电荷

1、物体有了吸引轻小物体的性质,我们就说物体带了电,或者说带了电荷;

2、用摩擦的方法使物体带电叫摩擦起电;

二、两种电荷:

1、用绸子摩擦的玻璃棒带的电荷叫正电荷;

2、把用毛皮摩擦过的橡胶棒带的电荷叫负电荷;

3、基本性质:同中电荷相互排斥,异种电荷相互吸引;

三、验电器

1、用途:用来检验物体是否带电;

2、原理:利用异种电荷相互排斥;

四、电荷量(电荷)

1、电荷的多少叫电荷量、简称电荷;

2、电荷的单位:库仑(C)简称库;

五、元电荷:

1、原子是由位于中心的带正电的原子核和核外带负电的电子组成;

2、把最小的电荷叫元电荷(一个电子所带电荷)用e表示;e=1.60×10;

4、在通常情况下,原子核所带正电荷与核外电子总共所带负电荷在数量上相等,整个原子呈中性;

六、摩擦起电

1、原因:不同物体的原子核束缚电子的本领不同;

2、摩擦起电的实质:摩擦起电并不是创生了电,而是电子从一个物体转移到了另一个物体,失去电子的带正电。得到电子的带负电;

七、导体和绝缘体

1、善于导电的物体叫导体;如:金属、人体、大地、酸碱盐溶液;

2、不善于导电的物体叫绝缘体,如:橡胶、玻璃、塑料等;

3、金属导体靠自由电子导电,酸碱盐溶液靠正负离子导电;

4、导体和绝缘体在一定条件下可以相互转换;

八、电流

1、电荷的定向移动形成电流;

2、能够供电的装置叫电源。干电池的碳棒为正极,锌筒为负极;

3、规定:真电荷定向移动的方向为电流的方向(负电荷定向移动方向和电流方向相反)

4、在电源外部,电流的方向从电源的正极流向负极;

九、电路:用导线将用电器、开关、用电器连接起来就组成了电路;

1、电源:提供持续电流,把其它形式的能转化成电能;

2、用电器:消耗电能,把电能转化成其它形式的能(电灯、电风扇等)

3、导线:输送电能的;

4、开关:控制电路的通断;

十、电路的工作状态

1、通路:处处连同的电路;

2、开路:某处断开的电路;

3、短路:用导线直接将电源的正负极连同;

十一、电路图及元件符号:

1、用符号表示电路连接的图叫电路图,常用的符号如下:

画电路图时要注意:整个电路图是长方形;导线要横平竖直;元件不能画在拐角处。

十二、串联和并联

1、把电路元件逐个顺次连接起来的电路叫串联

2、特点:电流只有一条路径;各用电器互相影响;

3、把电路元件并列连接起来的电路叫并联电路;

4、特点:电流有多条路径;各用电器互不影响,一条支路开路时,其它支路仍可为通路;

5、常根据电流的流向判断串、并联:从电源的正极开始,沿电流方向走一圈,回到负

极,则为串联,若出现分支则为并联;

十三、电路的连接方法

1、线路简其捷、不能出现交叉;

2、连出的实物图中各元件的顺序一定要与电路图保持一致;

3、一般从电源的正极起,顺着电流方向,依次连接,直至回到电源的负极;

4、并联电路连接中,先串后并,先支路后干路,连接时找准分支点和汇合点。

5、在连接电路前应将开关断开;十四、电流的强弱

1、电流:表示电流强弱的物理量,符号I

2、单位:安培,符号A,还有毫安(mA)、微安(A)1A=1000mA1mA=1000A

十五、电流的测量:用电流表;符号A

1、电流表的结构:接线柱、量程、示数、分度值

2、电流表的使用

(1)先要三“看清”:看清量程、指针是否指在临刻度线上,正负接线柱

(2)电流表必须和用电器串联;(相当于一根导线)

(3)电流表必须和用电器串联;(相当于一根导线)

(4)选择合适的量程(如不知道量程,应该选较大的量程,并进行试触。)

注:试触法:先把电路的一线头和电流表的一接线柱固定,再用电路的另一线头迅速试触电流表的另一接线柱,若指针摆动很小(读数不准),需换小量程,若超出量程(电流表会烧坏),则需换更大的量程。

3、电流表的读数

(1)明确所选量程

(2)明确分度值(每一小格表示的电流值)

(3)根据表针向右偏过的格数读出电流值

十六、串、并联电路中电流的特点:串联电路中电流处处相等;并联电路干路电流等于各支路电流之和;

篇14:物理知识点总结

一、力学

1、胡克定律:f=kx(x为伸长量或压缩量,k为劲度系数,只与弹簧的长度、粗细和材料有关)

2、重力:G=mg(g随高度、纬度、地质结构而变化,g极>g赤,g低纬>g高纬)3、求F1、F2的合力的公式:F合

F12F222F1F2cos

两个分力垂直时:F合F12F22

注意:(1)力的合成和分解都均遵从平行四边行定则。分解时喜欢正交分解。

(2)两个力的合力范围:F1-F2FF1+F2

(3)合力大小可以大于分力、也可以小于分力、也可以等于分力。

4、物体平衡条件:F合=0或Fx合=0Fy合=0

推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反向。解三个共点力平衡的方法:合成法,分解法,正交分解法,三角形法,相似三角形法5、摩擦力的公式:

(1)滑动摩擦力:f=N(动的时候用,或时最大的静摩擦力)

说明:①N为接触面间的弹力(压力),可以大于G;也可以等于G;也可以小于G。

②为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N无关。

(2)静摩擦力:由物体的平衡条件或牛顿第二定律求解,与正压力无关。大小范围:0f静fm(fm为最大静摩擦力)

说明:①摩擦力可以与运动方向相同,也可以与运动方向相反。

②摩擦力可以作正功,也可以作负功,还可以不作功。

③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。

6、万有引力:

(1)公式:F=G

m1m2

(适用条件:只适用于质点间的相互作用)2

G为万有引力恒量:G=6.67×10-11Nm2/kg2

(2)在天文上的应用:(M:天体质量;R:天体半径;g:天体表面重力加速度;

r表示卫星或行星的轨道半径,h表示离地面或天体表面的高度))

a、万有引力=向心力F万=F向

Mmv2422mrm2rmamg“即G2mrrT由此可得:

42r3①天体的质量:M,注意是被围绕天体(处于圆心处)的质量。

GT2高中物理公式

②行星或卫星做匀速圆周运动的线速度:vGMr,轨道半径越大,线速度越小。

GM,轨道半径越大,角速度越小。③行星或卫星做匀速圆周运动的角速度:r3

42r3,轨道半径越大,周期越大。④行星或卫星做匀速圆周运动的周期:TGM

2GMT⑤行星或卫星做匀速圆周运动的轨道半径:,周期越大,轨道半径越大。r3

⑥行星或卫星做匀速圆周运动的向心加速度:a小。

⑦地球或天体重力加速度随高度的变化:g”42GM,轨道半径越大,向心加速度越r2GMGM22r(Rh)GMR2特别地,在天体或地球表面:g0g“g022R(Rh)42r323M3r32GTT⑧天体的平均密度:特别地:当r=R时:43GT2R3GVR3b、在地球表面或地面附近的物体所受的重力等于地球对物体的引力,即mgGMm∴R2gR2GM。在不知地球质量的情况下可用其半径和表面的重力加速度来表示,此式在天

体运动问题中经常应用,称为黄金代换式。

c、第一宇宙速度:第一宇宙速度在地面附近绕地球做匀速圆周运动所必须具有的速度。也是人造卫星的最小发射速度。

vGMgR7.9km/sr第二宇宙速度:v2=11.2km/s,使物体挣脱地球引力束缚的最小发射速度。第三宇宙速度:v3=16.7km/s,使物体挣脱太阳引力束缚的最小发射速度。7、牛顿第二定律:F合map(后面一个是据动量定理推导)

t理解:(1)矢量性(2)瞬时性(3)独立性(4)同体性(5)同系性(6)同单位制

牛顿第三定律:F=-F’(两个力大小相等,方向相反作用在同一直线上,分别作用在两个物体上)

高中物理公式8、匀变速直线运动:

基本规律:Vt=V0+atS=vot+几个重要推论:

2(1)vt2v02as

12

at2ASatB

(结合上两式知三求二)

(2)AB段中间时刻的即时速度:vt2v0vts2t(3)AB段位移中点的即时速度:vs22v0vt22匀速:vt/2=vs/2,匀加速或匀减速直线运动:vt/2V(1)上升最大高度:H=o

2g(2)上升的时间:t=

2Vog(3)上升、下落经过同一位置时的加速度相同,而速度等值反向

(4)上升、下落经过同一段位移的时间相等。(5)从抛出到落回原位置的时间:t=

2Vog(6)适用全过程的公式:S=Vot一

12

gtVt=Vo一gt2Vt2一Vo2=一2gS(S、Vt的正、负号的理解)11、匀速圆周运动公式

线速度:V=

s2R==R=2fRTtt22fT角速度:=

v2422R2R42f2R向心加速度:a=RTv2422

mR=m2R42mf2R向心力:F=ma=mRT注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心。

(2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。

(3)氢原子核外电子绕核作匀速圆周运动的向心力是原子核对核外电子的库仑力。

12、平抛运动公式:水平方向的匀速直线运动和竖直方向的初速度为零的匀加速直线运动(即自由落体运动)的合运动

水平分运动:水平位移:x=vot水平分速度:vx=vo

竖直分运动:竖直位移:y=

1gt2竖直分速度:vy=gt2x)θytg=

v=

VyVo2vy=votgvo=vyctg

VoVy2vo=vcosvy=vsin

ytg=2tgx高中物理公式4

tg=13、功:W=Fscosα(适用于恒力的功的计算,α是F与s的夹角)

(1)力F的功只与F、s、α三者有关,与物体做什么运动无关(2)理解正功、零功、负功

(3)功是能量转化的量度

重力的功------量度------重力势能的变化电场力的功-----量度------电势能的变化

*分子力的功-----量度------分子势能的变化合外力的功------量度-------动能的变化安培力做功------量度------其它能转化为电能14、动能和势能:动能:Ek选择有关)

15、动能定理:外力对物体所做的总功等于物体动能的变化(增量)。公式:W合=Ek=Ek2-Ek1=

12mv重力势能:Ep=mgh(与零势能面的21212mv2mv12216、机械能守恒定律:机械能=动能+重力势能+弹性势能

条件:系统只有内部的重力或弹力(指弹簧的弹力)做功。有时重力和弹力都做功。公式:mgh1+

112mv12mgh2mv222具体应用:自由落体运动,抛体运动,单摆运动,物体在光滑的斜面或曲面,弹簧振子等17、功率:P=

W=Fvcosα(在t时间内力对物体做功的平均功率)t为平均速度时,P为平均功率;P一定时,F与v成反比)

P=Fv(F为牵引力,不是合外力;v为即时速度时,P为即时功率;v

18、功能原理:外力和“其它”内力做功的代数和等于系统机械能的变化19、功能关系:功是能量变化的量度。

摩擦力乘以相对滑动的路程等于系统失去的机械能,等于摩擦产生的热

QfS相对E2E1

20、物体的动量P=mv,*21、力的冲量I=Ft

*22、动量定理:F合t=mv2mv1(物体所受合外力的冲量等于它的动量的变化)23、动量守恒定律m1v1+m2v2=m1v1’+m2v2’或p1=-p2或p1+p2=0(注意设正

高中物理公式方向)

适用条件:(1)系统不受外力作用。(2)系统受外力作用,但合外力为零。(3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力。(4)系统在某一个方向的合外力为零,在这个方向的动量守恒。

完全非弹性碰撞mV1+MV2=(M+m)V(能量损失最大)24、简谐振动的回复力F=-kx加速度akxmA25、单摆振动周期T2L(与摆球质量、振幅无关)g*26、弹簧振子周期T2mkf固f

27、共振:驱动力的频率等于物体的固有频率时,物体的振幅最大

28、机械波:机械振动在介质中传播形成机械波。它是传递能量的一种方式。

产生条件:要有波源和介质。

波的分类:①横波:质点振动方向与波的传播方向垂直,有波峰和波谷。

②纵波,质点振动方向与波的传播方向在同一直线上。有密部和疏部。

波长λ:两个相邻的在振动过程中对平衡位置的位移总是相等的质点间的距离。

vTvf注意:①横波中两个相邻波峰或波谷问距离等于一个波长。

②波在一个周期时间里传播的距离等于一个波长。波速:波在介质中传播的速度。机械波的传播速度由介质决定。波速v波长λ频率f关系:vTf(适用于一切波)

注意:波的频率即是波源的振动频率,与介质无关。29、浮力F浮gV30、密度mm,mV,VV*31、力矩MFL*32、力矩平衡条件M顺=M逆二、电磁学(一)电场1、库仑力:Fkq1q2(适用条件:真空中点电荷)r2k=9.0×109Nm2/c2静电力恒量

高中物理公式电场力:F=Eq(F与电场强度的方向可以相同,也可以相反)2、电场强度:电场强度是表示电场强弱的物理量。

定义式:EF单位:N/CqQr点电荷电场场强Ek匀强电场场强E3、电势,电势能AE电Udq顺着电场线方向,电势越来越低。

,E电qA

4、电势差U,又称电压UWUAB=φA-φBq5、电场力做功和电势差的关系WAB=qUAB6、粒子通过加速电场qU1mv22121qEL21qUL27、粒子通过偏转电场的偏转量yat2222mV02mdV0粒子通过偏转电场的偏转角tg8、电容器的电容

vyvxqUL

2mdv0cQU电容器的带电量Q=cU平行板电容器的电容cS4kd电压不变电量不变(二)直流电路1、电流强度的定义:I=

Q微观式:I=nevs(n是单位体积电子个数,)tlR2、电阻定律:

S电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。单位:

Ωm

3、串联电路总电阻R=R1+R2+R3

电压分配

U1R1,U1U2R2R1UR1R2高中物理公式功率分配P1R1,P1P2R2R1P

R1R24、并联电路总电阻1111(并联的总电阻比任何一个分电阻小)

RR1R2R3两个电阻并联RR1R2

R1R2并联电路电流分配I1R2,I1=R2I

I2R1R1R2并联电路功率分配P1R2,P1P2R1R2PR1R25、欧姆定律:(1)部分电路欧姆定律:I(2)闭合电路欧姆定律:I=

UU变形:U=IRRRI

ErE

EUIrRr

22路端电压:U=E-Ir=IR

输出功率:P出=IE-Ir=IR(R=r输出功率最大)R电源热功率:PrI2r

电源效率:

P出P总=

UR=ER+r

6、电功和电功率:电功:W=IUt

焦耳定律(电热)Q=IRt电功率P=IU

2U2t纯电阻电路:W=IUt=IRtR2P=IU

非纯电阻电路:W=IUtIRt

P=IUIr

(三)磁场

1、磁场的强弱用磁感应强度B来表示:B22F(条件:BL)单位:TIl2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。(1)直线电流的磁场

(2)通电螺线管、环形电流的磁场3、磁场力

(1)安培力:磁场对电流的作用力。公式:F=BIL(BI)(B//I是,F=0)

高中物理公式方向:左手定则

(2)洛仑兹力:磁场对运动电荷的作用力。

公式:f=qvB(Bv)方向:左手定则

2mv粒子在磁场中圆运动基本关系式qvB解题关键画图,找圆心画半径R粒子在磁场中圆运动半径和周期Rmv,T2mt=T

2qBqB4、磁通量=BS有效(垂直于磁场方向的投影是有效面积)

或=BSsin(是B

与S的夹角)

=2-1=BS=BS(磁通量是标量,但有正负)

(四)电磁感应

1.直导线切割磁力线产生的电动势(经常和I=

EBLv(三者相互垂直)求瞬时或平均

E

,F安=BIL相结合运用)Rr

2.法拉第电磁感应定律En1SB=n求平均S=nB=n2ttttB2L2v3.直杆平动垂直切割磁场时的安培力F(安培力做的功转化为电能)

Rr4.转杆电动势公式E12BL2R1匝5.感生电量(通过导线横截面的电量)Q*6.自感电动势E自L(五)交流电

It1.中性面(线圈平面与磁场方向垂直)m=BS,e=0I=02.电动势最大值

mNBS=Nm,t0

3.正弦交流电流的瞬时值i=Imsint(中性面开始计时)4.正弦交流电有效值最大值等于有效值的2倍5.理想变压器P入P出

I1n2U1n1(一组副线圈时)

I2n1U2n2高中物理公式*6.感抗XL2fL电感特点:*7.容抗XC(六)电磁场和电磁波*1、LC振荡电路

(1)在LC振荡电路中,当电容器放电完毕瞬间,电路中的电流为最大,线圈两端电

压为零。

在LC回路中,当振荡电流为零时,则电容器开始放电,电容器的电量将减少,电容器中的电场能达到最大,磁场能为零。(2)周期和频率T2LCf2、麦克斯韦电磁理论:

(1)变化的磁场在周围空间产生电场。(2)变化的电场在周围空间产生磁场。推论:①均匀变化的磁场在周围空间产生稳定的电场。

②周期性变化(振荡)的磁场在周围空间产生同频率的周期性变化(振荡)的电场;周期性变化(振荡)的电场周围也产生同频率周期性变化(振荡)的磁场。

3、电磁场:变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一体,叫电磁场。

4、电磁波:电磁场由发生区域向远处传播就形成电磁波。5、电磁波的特点

⒈以光速传播(麦克斯韦理论预言,赫兹实验验证);⒉具有能量;⒊可以离开电荷而独立存在;⒋不需要介质传播;⒌能产生反射、折射、干涉、衍射等现象。6、电磁波的周期、频率和波速:V=f=

1电容特点:2fC12LC

(频率在这里有时候用ν来表示)T波速:在真空中,C=3×108m/s三、光学(一)几何光学

1、概念:光源、光线、光束、光速、实像、虚像、本影、半影。2、规律:(1)光的直线传播规律:光在同一均匀介质中是沿直线传播的。

(2)光的独立传播规律:光在传播时,虽屡屡相交,但互不干扰,保持各自的规

律传播。

(3)光在两种介质交界面上的传播规律

高中物理公式①光的反射定律:反射光线、入射光线和法线共面;反射光线和入射光线分居法线两侧;反射角等于入射角。②光的析射定律:

a、折射光线、入射光线和法线共面;入射光线和折射光线分别位于法线的两侧;

入射角的正弦跟折射角的正弦之比是常

数。即sini常数sinrb、介质的折射率n:光由真空(或空气)射入某中介质时,有n于介质的性质,叫介质的折射率。

c、设光在介质中的速度为v,则:nsini,只决定sinrc可见,任何介质的折射率大于1。vd、两种介质比较,折射率大的叫光密介质,折射率小的叫光疏介质。

③全反射:a、光由光密介质射向光疏介质的交界面时,入射光线全部反射回光密介质中的现象。

b、发生全反射的条件:光从光密介质射向光疏介质;入射角等于临界角。临界角CsinC1n④光路可逆原理:光线逆着反射光线或折射光线方向入射,将沿着原来的入射光线方向反射或折射。

真sinic11归纳:折射率n===

sinrvsinC介5、常见的光学器件:(1)平面镜(2)棱镜(3)平行透明板(二)光的本性

人类对光的本性的认识发展过程(1)微粒说(牛顿)(2)波动说(惠更斯)

①光的干涉双缝干涉条纹宽度xL(波长越长,条纹间隔越大)

d应用:薄膜干涉由薄膜前后表面反射的两列光波叠加而成,劈形薄膜干涉可产生平行相间干涉条纹,检查平面,测量厚度,光学镜头上的镀膜。②光的衍射单缝(或圆孔)衍射。泊松亮斑(波长越长,衍射越明显)

(2)电磁说(麦克斯韦)

高中物理公式波长/m104名称无线电红外线可见光紫外线伦琴(X)射线产生机理自由电子的运动原子外层电子受激发特性与应用波动性显著,无线电通讯一切物体都能辐射,具有热作用,遥感技术,遥控器由七种色光组成一切高温物体都能辐射,具有化学作用、荧光效应10-10原子外内电子受激发原子核受激发粒子性显著,穿透本领强粒子性显著,穿透本领更强γ射线(4)光子说(爱因斯坦)①基本观点:光由一份一份不连续的光子组成,每份光子的能量是Eh②实验基础:光电效应现象

hc

③规律:a、每种金属都有发生光电效应的极限频率;b、光电子的最大初动能与光的强度无关,随入射光频率的增大而增大;c、光电效应的产生几乎是瞬时的;d、光电流与入射光强度成正比。

④爱因斯坦光电效应方程

hwEkm

0hc

逸出功wh0光电效应的应用:光电管可将光信号转变为电信号。(5)光的波粒二象性

光是一种具有电磁本性的物质,既有波动性,又有粒子性。光具有波粒二象性,单个光子的个别行为表现为粒子性,大量光子的运动规律表现为波动性。波长较大、频率较低时光的波动性较为显著,波长较小,频率较高的光的粒子性较为显著。(6)光波是一种概率波四、原子物理

1.氢原子能级,半径EnE1E1=-13.6eV2n能量最少rn=n2r1

r1=0.531010m

跃迁时放出或吸收光子的能量Eh2.三种衰变

高中物理公式12

hc射线α射线β射线γ射线本质4氦原子核(2He)流0高速电子(1e)流速度特性v1贯穿能力小,电离作用强。C10贯穿能力强,电离作用弱。贯穿能力很强,电离作用很弱。V≈CV=C高频电磁波(光子)衰变:原子核由于放出某种粒子而转变位新核的变化。

放出α粒子的叫α衰变。放出β粒子的叫β衰变。放出γ粒子的叫γ衰变。

①哀变规律:(遵循电荷数、质量数守恒)

γ衰变:伴随着α衰变或β衰变同时发生。

1n13.半衰期NN0,m=m0()

224.质子的发现(1919年,卢瑟福)

42171He147N8O1H

n中子的发现(1932年,查德威克)发现正电子(居里夫妇)5.质能方程E=mc2

424291He4Be126C0n

2730130300He13Al15P0n,15P14Si1e

Emc21J=1Kg.(m/s)2

-27

1u放出的能量为931.5MeV1u=1.660566×106.重核裂变

23592kg

1901U0n38Sr136MeV原子弹核反应堆54Xe100n1412341氢的聚变1H1H2He0n17.6MeV氢弹太阳内部反应

六、狭义相对论

1.伽利略相对性原理:力学规律在任何惯性系中都是相同的。2.狭义相对论的两个基本假设:

(1)狭义相对性原理:在不同的惯性系中,一切物理规律都是相同的。(2)光速不变原理:真空中的光速在不同的惯性参考系中都是相同的。3.时间和空间的相对性:(1)“同时”的相对性:“同时”是相对的。在一个参考系中看来“同时”的,在另一个参考系中却可能“不同时”。

(2)长度的相对性:一条沿自身长度方向运动的杆,其长度总比静止时的长度小。

即ll0v1

c2(式中l,是与杆相对运动的人观察到的杆长,l0是与杆相对静止的人观察到的杆长)。注意:①在垂直于运动方向上,杆的长度没有变化。

高中物理公式②这种长度的变化是相对的,如果两条平行的杆在沿自己的长度方向上做相对运动,与他们一起运动的两位观察者都会认为对方的杆缩短了。

(3)时间间隔的相对性:从地面上观察,高速运动的飞船上时间进程变慢,飞船上的人则感觉地面上的时间进程变慢。(时间膨胀或动钟变慢)

tv1c2(式中是与飞船相对静止的观察者测得的两事件的时间间隔,

△t是地面上观察到的两事件的时间间隔)。

(4)相对论的时空观:经典物理学认为,时间和空间是脱离物质而独立存在的,是绝对的,二者之间也没有联系;相对论则认为时间和空间与物质的运动状态有关,物质、时间、空间是紧密联系的统一体。

4.狭义相对论的其他结论:*(1)相对论速度变换公式:uu”v(式中v为高速火车相对地的速度,u′为车上的u"v12c人相对于车的速度,u为车上的人相对地面的速度)。

对于低速物体u′与v与光速相比很小时,根据公式可知,这时u≈uv,这就是经典物理学的速度合成法则。

注意:这一公式仅适用于u′与v在一直线上的情况,当u′与v相反时,u′取负值。(2)相对论质量:mm0v1c2(式中m0为物体静止时的质量,m为物体以速度v运动

时的质量,由公式可以看出随v的增加,物体的质量随之增大)。

2(3)质能方程:Emc

常见非常有用的经验结论:

1、物体沿倾角为α的斜面匀速下滑------=tanα;

2、物体沿光滑斜面滑下a=gsinα物体沿粗糙斜面滑下a=gsinα-gcosα3、两物体沿同一直线运动,在速度相等时,距离有最大或最小;4、物体沿直线运动,速度最大的条件是:a=0或合力为零。

5、两个共同运动的物体刚好脱离时,两物体间的弹力为=0,加速度相等。6、两个物体相对静止,它们具有相同的速度;

7、水平传送带以恒定速度运行,小物体无初速度放上,达到共同速度过程中,摩擦生热等于小物体的动能。

*8、一定质量的理想气体,内能大小看温度,做功情况看体积,吸热、放热综合以上两项用能量守恒定律分析。

9、电容器接在电源上,电压不变;断开电源时,电容器上电量不变;改变两板距离E不变。10、磁场中的衰变:外切圆是α衰变,内切圆是β衰变,α,β是大圆。11、直导体杆垂直切割磁感线,所受安培力F=B2L2V/R。

12、电磁感应中感生电流通过线圈导线横截面积的电量:Q=N△Ф/R。

13、解题的优选原则:满足守恒则选用守恒定律;与加速度有关的则选用牛顿第二定律F=ma;与时间直接相关则用动量定理;与对地位移相关则用动能定理;与相对位移相关(如摩擦生热)则用能量守恒。

高一物理学习方法总结

高一物理教学总结

高中物理教师个人工作总结

高中物理教师个人工作总结202

高中物理教育教学工作总结

高中物理教学设计策略研究论文

高一物理学习方法与技巧总结

高中物理教师个人年度总结

高中物理“地磁场”教学要点

高中物理学习计划

物理高中知识点总结
《物理高中知识点总结.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【物理高中知识点总结(推荐14篇)】相关文章:

高中物理教学建议2024-01-20

高一物理力教学反思2022-05-06

高一物理教学工作总结2022-11-09

高中物理教学方法论文2023-11-23

高一上期物理教学总结2023-01-28

高中物理教学经验论文2022-09-23

高中物理组教学工作总结2023-07-06

高中物理老师教学工作年度总结2022-07-25

高一物理教育教学反思2022-05-06

高一物理教学工作总结2022-12-18