基于虚拟仪器的农业测试技术教学与研究(精选13篇)由网友“皮卡皮卡皮卡丘”投稿提供,以下是小编整理过的基于虚拟仪器的农业测试技术教学与研究,欢迎阅读分享。
篇1:基于虚拟仪器的农业测试技术教学与研究
基于虚拟仪器的农业测试技术教学与研究
虚拟仪器具有传统仪器不可比拟的优点而在农业生产中得到广泛的.应用,它能执行测试、转换数据、分析等任务,也能够连接互联网和其他仪器以实现通信.以其完善的软件功能和简单的硬件结构完成强大功能.本文介绍了虚拟仪器概念、结构、特点,并且叙述了虚拟仪器技术在农业工程中的应用.
作 者:焦俊 Jiao Jun 作者单位:安徽农业大学信息与计算机学院,安徽合肥,230036 刊 名:安徽农学通报 英文刊名:ANHUI AGRICULTURAL SCIENCE BULLETIN 年,卷(期): 15(4) 分类号:S126 关键词:虚拟仪器 测试技术 教学与研究篇2:VXI总线与虚拟仪器技术
20世纪80年代后期,仪器制造商发现GPIB总线和VME总线产品无法再满足军用测控系统的需求了。在这种情况下,HP、Tekronix等五家国际著名的仪器公司成立了VXIbus联合体,并于1987年发布了VXI规范的第一个版本。几经修改和完善,与1992年被IEEE接纳为IEEE-1155-1992标准。
VXIbus规范是一个开放的体系结构标准,其主要目标是使VXIbus器件之间、VXIbus器件与其它标准的器件(计算机)之间能够以明确的方式开放地通信;使系统体积更小;通过使用高带宽的吞吐量,为开发者提供高性能的测试设备;采用通用的接口来实现相似的仪器功能,使系统集成软件成本进一步降低。
(本网网收集整理)
VXIbus规范发布后,由于军方对测控系统的大量需求,许多仪器生产厂商都加入到VXIplug&play(VXI既插既用)联盟。联盟是VXIbus联合体的固有补充机构。联盟通过规定连接器的统一方法、UUT接口和测试夹具、共享存储器通信的仪器协议、可选VXI特性的统一使用方法以及统一文件的编制方法来增加硬件的兼容性,并开发一种统一的校准方法。联盟还通过规定和推广标准系统软件框架来实现系统软件的“plug&play”互换性。
虚拟仪器(Vitual Instrumentation,VI)最早是适应PC卡式仪器于1986年由NI公司提出的。所谓虚拟仪器,简单地说就是一组完成传统仪器功能的硬件和软件部件。VI通过软件将通用计算机与仪器硬件结合起来,用户可以通过友好的图形界面(通常称为虚拟面板)
操作这台计算机,就象在操作自己定义、自己设计的一台单个传统仪器一样。VI透明地将计算机资源和仪器硬件(如A/D、D/A、数字I/0、定时器和信号调理器等)的测试、控制能力结合在一起,通过软件实现地数据的分析处理和表达,从而能更迅速、更经济、更灵活地解决测试问题,并有效地降低了系统组建成本。
2 VXI总线系统规范简介
VXI总线系统或者其子系统由一个VXIbus主机箱、若干VXIbus器件、一个VXIbus资源管理器和主控制器组成,零槽模块完成系统背板管理,包括提供时钟源和背板总线仲裁等,当然它也可以同时具有其它的仪器功能。资源管理器在系统上电或者复位时对系统进行配置,以使系统用户能够从一个确定的状态开始系统操作。在系统正常工作后,资源管理器就不再起作用。主机箱容纳VXIbus仪器,并为其提供通信背板、供电和冷却。
VXIbus不是设计来替代现存标准的,其目的只是提高测试和数据采集系统的总体性能提供一个更先进的平台。因此,VXIbus规范定义了几种通信方法,以方便VXIbus系统与现存的VMEbus产品、GPIB仪器以及串口仪器的混成。
2.1 VXI总线系统机械结构
VXIbus规范定义了四种尺寸的VXI模块。较小的尺寸A和B是VMEbus模块定义的尺寸,并且从任何意义上来说,它们都是标准的VEMbus模块。较大的C和D尺寸模块是为高性能仪器所定义的,它们增大了模块间距,以便对包含用于高性能测量场合的敏感电路的模块进行完全屏蔽。A尺寸模块只有P1、P2和P3连接器。
目前市场上最常见的是
C尺寸的VXIbus系统,这主要是因为C尺寸的VXIbus系统体积较小,成本相对较低,又能够发挥VXIbus作为高性能测试平台的优势。
2.2 VXI总线系统电气结构
VXIbus完全支持32位VME计算机总线。除此之外,VXIbus还增加了用于模拟供电和ECL供电的额外电源线、用于测量同步和触发的仪器总线、模拟相加总线以及用于模块之间通信的本地总线。
VXIbus规范定义了3个96针的DIN连接器P1、P2和P3。P1连接器是必备的,P2和P3两个连接器可选。三个连接器的具体的信号分配可参见文献[2]。下面对VXIbus在VMEbus总线基础上增加的用于高性能仪器的部分总线作一个简要的介绍。
CLK10时钟线 是一个10MHz的系统时钟,用于模块之间的精确同步。该信号源于0号槽,被分别差分送至各个模块插槽。
MODID线 模块识别线,可以通过特有的物理位置或插槽类识别逻辑器件。这些线自0号槽分别送至1号槽至12号槽。系统自动配置时必须用到MODID线。
TTL触发线 包括TTLTRG0~TTLTRG7,是一组用于模块间通信的、集电极开路的TTL信号线。包括0号槽在内所有模块都可以驱动这些线或者从这些线上接受信息。这是一组通用线,可用于触发、挂钩、时钟或逻辑状态的传送。VXIbus规范已经定义了同步(SYNC)触发、时钟传送、数据传送、起/停(STST)和外部触发缓冲7种标准工作方式。
ECL触发线 包括ECLTRG0-ECLTRG5,同TTL触发线一样,是一组用于模块之间通信和定时的信号线,但具有更高的工作速度。VXIbus规范已经定义了7种跟TTL触发线类似的标准工作方式。
SUMBUS 相加总线是VXIbus背板上的一条模拟相加接点。每个模块都可以用一个模拟电流源驱动器来驱动这条线,或者通过一个高阻接收器如一个高阻抗模拟放大器。接收来自该总线的信息。
LBUS 本地总线是一种菊花链总线,可以用于相邻安装模块的本地通信。规范已经规定了使用LBUS传送TTL、ECL、模拟低、模拟中和模拟高五种信号的标准。
CLK100和SYNC100 分别是100MHz系统时钟和100MHz同步信号。用于系统中更高精度的定时和触发。
STARX和STARY 星形触发线提供了模块间的异步通信。两条STAR线连接在各模块插槽和0号槽之间。0号槽可提供一个交叉矩阵开关,通过对该开关进行编程可以确定任何两根STARX和STARY线之间的信号路径。
电源线 VXIbus加大了+5和+12V电压的供电功率,增加了+12V(为模拟电路提供)和-2V、-5.2V(为ECL电路提供)电源线。
2.3 VXIbus系统EMC、供电和冷却
VXIbus总线规范规定了系统传导及辐射EMC(电磁兼容)产生和敏感度的上限值。EMC的限定保证了包含敏感电路的模块能够完成所期望的操作,而不受到系统中其他模块的干扰。
为了方便系统集成VXIbus规范要求机箱制造商和模块制造商在其产品规范中给机箱供电和冷却能力以及模块的电源需求和冷却指标。系统集成者可以根据这些指标选择合适的机箱和模块。
2.4 VXlbus系统通信
通信是VXibus标准的又一个重要组成部分。VXIbus总线规范定义了几种器件类型和通信协议。然而,规范为了保证开放性,并没有规定VXIbus主机箱和器件的控制方式,以便厂商可以灵活定义并与高速发展的PC技术同步。下一节将要详细讨论当前流行的几种方式。
每个VXIbus器件都有一个唯一逻辑地址(unique logical address,ULA),编号从0到255,即一个VXIbus系统最多有256个器件。VXIbus规范允许许多器件驻留在一个插槽中以提高系统的集成度和便携性,降低系统成本,也允许一个复杂器件占用多个插槽,VXIbus通过ULA进行器件寻址,而不是通过器件的物理位置。
每个VXIbus器件必须具有图1所示的一组寄存器,这些器件占用VXIbus A16地址空间的高16K。图中所标注的地址是相对于器件基地址的偏移地址。器件基地址计算公式为:
基地址=ULA×3F16+0C00016 (1)
图中A32指针高是指数据的高16位,A32指针低是指数据的低16位,A24指针高是指数据的高12位,A24指针低是指数据的低12位,数据低是指数据的低8位,数据高是指数据的高8位。
最常见的VXIbus器件
是寄存器基器件和消息基器件。
寄存器基器件是最简单的VXIbus器件,通过寄存器读写来通信,常用于功能简单的器件。它通过VXIbus定义的配置元素来完成配置,并通过器件相关寄存器来工作。寄存器基器件具有很高的通信速度,随着众多产品对VXIplug&play标准的支持,其编程难的问题也得到了解决。
消息基器件通常是VXIbus系统中具有本地智能的器件。高性能仪器通常都是消息基的。除了VXIbus系统最基本的配置寄存器外,消息基仪器还具有一组通信寄存器,并支持基于ASCII码的字串行协议,以同系统中的其它消息基器件通信。这样尽管会因为对ASCII码命令进行解析而降低通信速度,但是它可以简化多厂商支持,并简化编码(当然随着VXIplug&play标准的普及而不再显著)。消息基器件的成本较高。
3 VXI总线控制方式
总的来说,VXI控制器有嵌入式和外接式两类,而外接控制器又有很多不同的方案可供选择。
3.1 嵌入式VXI控制器
嵌入式VXI控制器就是把计算机做成VXIbus模块,直接安装到VXI主机箱中,并通常占据0槽位置。大多数嵌入式控制器都基于PC体系,也有部分是基于HP-UX和其它如Lynx-OS实时系统的。采用嵌入式控制器的VXI系统具有最小可能的体积。
嵌入式控制器能够直接访问VXIbus背板信号,并直接读写VXIbus器件的寄存器,而不会像外接控制器那样进行总线转换而引入软件开销,因此具有最高的数据传输性能。
3.2 外接式控制器
VXI总线外接式控制方式是一种灵活而且性能价格比很高的控制方案,得到了十分广泛的应用。根据所采用的外部总线,外接式控制器又有直接扩展和转换扩展两种方式。
直接扩展就是将部分VXI总线信号线直接扩展机箱外作为外总线,连接计算机和VXI机箱控制器,例如MXI/MXI-2总线控制方案。图2给出了一个典型MXI/MXI/MXI-2总线控制方案。图2给出了一个典型MXI/MXI-2系统配置,MXI/MXI-2总线直接将PC扩展总线和VXI总线耦合起来,通过硬件数据传输周期转换,在PC扩展总线和VXI总线之间并行地进行数据传输,具有很高的随机读写和字串行性能。MXI/MXI-2总线还扩展了VXI总线的状态、中断、时钟和触发等总线,是一种高性能外接控制方案。
转换扩展就是用一些跟VXI总线无直接联系的通用总线(如GP-IB、1394、MAX-3、光纤通路等),来连接计算机和VXI总线控制器,从而构成GPIB-VXI、VXI-1394、MXI-3、FOXI等控制方案。图3给出了一个典型的VXI-1394系统。由于这些外总线通常都是串行的或者位数很少的`并行总线,数据传输过程中需要作大量的总线转换工作,首字节延迟较长,随机读写和字串行性能较低。并且采用这些控制方式的计算机不能直接访问VXI总线的状态、中断、时钟和触发等信号线,系统的实时性和同步性能要受到影响。但是这些系统的组建成本通常都相对较低,GPIB-VXI系统可利用已有的GPIB仪器,VXI-1394和MXI-3系统的块数据传输性能高,MXI-3和FOXI总线的工作距离远,因此它们适合在一些性能要求不是很高、经费不很充裕或者有特殊要求的场合中应用。
4虚拟仪器技术的新进展
近年来,虚拟仪器因其强大的性能价格比优势得到了广泛的应用。随着一些新的PC技术和数据采集技术逐渐应用到VI中,VI技术也有了一些新的进展。
4.1 基于Web的虚拟仪器
Web技术在Internet的广泛应用,导致了Browser/Web(B/W)这一新的软件模型的流行。Web与VI技术相结合,便产生了基于Web的VI,其模型如图4所示。
VI服务器实际上就是一台运行了Web服务器和VI应用的计算机,客户机通过浏览器请求运行服务器上的VI。服务器接收到请求后,运行相应的VI,并将结果返回到客户机。基于Web的VI系统可以建立在通用的WWW软件和客户/服务端开发技术基础上,例如使用IIS、Apache等作服务器,使用脚本语言、CGI、XML、JAVA等开发客户端和服务器应用,也可以采用VI厂商的提供的专用软件环境,例如NI公司的DataSocket和Gweb Server等。
4.2 虚拟硬件(VH)
虚拟硬件(Virtual Hardware,VH)的思想源于可编程器件。用户可以通过编程方便地改变硬件的功能和性能参数,从而依靠硬件设备的柔性(Flexibility)来增强其适应性和灵活性。
NI公司的NI5911/5912就是一种典型的采用了柔性精度技术的数字化仪。它由一个专门的数字滤波器、高速ADC、DAC和用于抽取与线性化的DSP组成。对于4~100MHz带宽的信号,系统工作在传统模式下,采样精度为8-bit。当输入信号带宽在4MHz以下时,系统将进入柔性精度状态,采用信号中的宽带量化噪音,对噪音进行电路滤除,然后数据被送到DSP进行线性化处理,并由DSP中的抗混叠滤波器进一步滤除高频噪音,最后用抽取技术按较低速
率重构波形,使有效垂直精度达到8~21bit。
4.3 可互换虚拟仪器(IVI)
IVI技术试图提供一个仪器驱动程序标准,为可互换的仪器提供了一个健壮的框架,并着力解决困优测试系统开发者的仪器性能问题。IVI规范把仪器分成一个系列的子类,例如DMM、示波器、开关等,并按照某一子类仪器最通用的特征和功能来为该子类仪器制定规范。IVI建立在VISA I/O层以上,把传统的仪器驱动程序分成子类驱动程序和仪器专有驱动程序两个子层。专有驱动程序执行传统的仪器驱动程序功能,但是具有性能优化的低层结构和仪器仿真功能。子类驱动程序包含该类仪器的通用功能函数,这些函数直接调用相应的专有仪器驱动程序函数。图5给出了一个采用IVI技术的虚拟示波器体系结构。
“软件就是仪器”是虚拟仪器带给仪器工业的一次革命。虚拟仪器的硬、软件的开放性、模块化、可重复使用的特点,同时借助于VXI总线的系统结构这一构筑虚拟仪器的理想的平台,虚拟仪器系统必然会给现代控制测试领域带来一片新天地。
篇3:VXI总线与虚拟仪器技术
摘要:虚拟仪器技术和VXI总线是当前测试控制领域的热门话题,也是仪器发展和设计的研究前沿。本文回顾了VXI 总线和虚拟仪器技术的发展过程,详细介绍了VXI总线规范并阐述了当前虚拟仪器技术的最新发展。
关键词:VXI总线 虚拟仪器 虚拟硬件
虚拟仪器是以一种全新的理念来设计和发展的仪器。和传统仪器不同,虚拟仪器本质上是一个开放式的结构,用户能够根据自己的需要定义仪器的功能。VXI总线测试平台是公认的21世纪仪器总线系统和自动测试系统的优秀平台。VXI总线模块仪器的`优良的交互操作性,数据传输速率高,可靠性高。体积小,重量轻,功耗低、可移动性好、易维修,价格与传统自动测试系统相比具有巨大的潜力。它的出现为虚拟仪器的发展提供了新的动力,进一步增强了虚拟仪器的功能。
篇4:VXI总线与虚拟仪器技术
20世纪80年代后期,仪器制造商发现GPIB总线和VME总线产品无法再满足军用测控系统的需求了。在这种情况下,HP、Tekronix等五家国际著名的仪器公司成立了VXIbus联合体,并于1987年发布了VXI规范的第一个版本。几经修改和完善,与1992年被IEEE接纳为IEEE-1155-1992标准。
VXIbus规范是一个开放的体系结构标准,其主要目标是使VXIbus器件之间、VXIbus器件与其它标准的器件(计算机)之间能够以明确的方式开放地通信;使系统体积更小;通过使用高带宽的吞吐量,为开发者提供高性能的测试设备;采用通用的接口来实现相似的仪器功能,使系统集成软件成本进一步降低。
VXIbus规范发布后,由于军方对测控系统的大量需求,许多仪器生产厂商都加入到VXIplug&play(VXI既插既用)联盟。联盟是VXIbus联合体的固有补充机构。联盟通过规定连接器的统一方法、UUT接口和测试夹具、共享存储器通信的仪器协议、可选VXI特性的统一使用方法以及统一文件的编制方法来增加硬件的兼容性,并开发一种统一的校准方法。联盟还通过规定和推广标准系统软件框架来实现系统软件的“plug&play”互换性。
虚拟仪器(Vitual Instrumentation,VI)最早是适应PC卡式仪器于1986年由NI公司提出的。所谓虚拟仪器,简单地说就是一组完成传统仪器功能的硬件和软件部件。VI通过软件将通用计算机与仪器硬件结合起来,用户可以通过友好的图形界面(通常称为虚拟面板)
操作这台计算机,就象在操作自己定义、自己设计的一台单个传统仪器一样。VI透明地将计算机资源和仪器硬件(如A/D、D/A、数字I/0、
[1] [2] [3] [4] [5] [6]
篇5:基于虚拟仪器技术的激光接收器测试系统
基于虚拟仪器技术的激光接收器测试系统
本测试系统通过先进的虚拟仪器技术和LabVIEW 7.0编程,实现了对传统光学测试仪器的'控制并利用信号源和NI PCI-6104E多功能采集卡进行激光接收器模拟仿真;该系统能实时地采集和分析相关测试数据,并能显示、保存和打印最终测试结果。由于使用选进的LabVIEW编程开发软件和虚拟仪器技术,该系统成为能自动化检测激光接收器各项参数的综合测试系统。实际的测试结果证明,这种方法实用、方便,测量精度高。
下载文章
篇6:基于虚拟仪器技术的手机翻盖耐久性测试系统
摘要:本文介绍一种手机翻盖耐久性测试系统。该系统由National Instruments公司的PXI-8186控制器、PXI-7344、UMI-7764、YASKAWA公司的SGDL-04AS伺服单元和SGML-04AF12伺服电机以及基于虚拟仪器的用户界面组成。该测试系统使用虚拟仪器使系统规模最小化,提高系统的稳定性且易于维护和扩展,操作界面友好。
关键词:虚拟仪器;测试系统;伺服单元;伺服电机
Key words: Virtual Instrument; Measurement system; Servo Pack; Servo Motor
手机翻盖耐久性测试即将待测翻盖手机重复开合预设的次数,然后观察手机的各部分性能是否完好,这在翻盖手机的生产过程中是相当重要的一环。以往采用气动方式的系统运行速度较慢(约为每2秒1次)且操作界面不够友好。本文介绍的基于虚拟仪器技术的手机翻盖耐久性测试系统采用NI Motion 控制模块控制伺服电机进行驱动,运行速度可达到原来的4倍多且同时可对4部手机进行测试,而采用National Instruments公司的虚拟仪器(LabVIEW)进行开发,使操作界面非常友好。
在测试过程中操作人员针对每批不同型号的手机在初次测试时可使用微调功能将各个参数调整至理想值,并且可将这些参数存成相应的配置文件以备以后测试同样型号手机时使用,这样大大减少了每次测试时的重复操作,提高了系统的自动化程度。
1. 系统原理及概述
1.1 运动控制原理
运动控制的原理简单来说即由运动控制模块发出控制信号,如脉冲信号和模拟电压量等,这两种控制信号分别对应于位置控制模式和速度控制模式,伺服电机在相应的模式下接收到控制信号便能按照预定的方式运动。但是电机的运动存在误差,特别在模拟的速度控制模式下,因此需要电机发出编码信号反馈到运动控制模块,使运动控制模块能够根据实际的运动情况做出相应的补偿来消除累计误差,这一点对于本系统这样需要长时间连续运行的系统来说尤为重要。下图为运动控制的简单原理示意图:
1.2 系统概述
本系统利用NI Motion 控制模块对伺服电机运动进行速度控制,按照用户设置的参数驱动相应的拨片、拨杆控制手机翻盖的开合。整个系统框图如图2所示:
整个系统由两部分组成:运动控制部分和测试平台部分。运动控制部分由NI PXI控制器和运动控制模块NI PXI-7344发出运动控制电压信号V-REF,通过NI UMI 7764接至伺服电机驱动器。测试平台部分包括两套独立的平台,每套平台有一组电机控制4台待测手机翻盖的开合(见图3)。全部4台电机的控制信号分别由NI PXI-7344的4轴提供。每台电机上均有编码信号反馈至运动控制模块以形成闭环控制回路,另有Forward Limit和Reverse Limit信号反馈至运动控制模块用以确定系统的初始位置以及防止电机运动超出极限位置。
2. 硬件连接
硬件配线包括伺服单元与伺服电机的连接、运动控制模块与伺服单元的连接。其中伺服单元与伺服电机的连接有专用的电缆和相应的端子定义,与伺服单元和伺服电机的的类型有关。下图是运动控制模块与伺服单元的`连接以及限位信号的连接图:
图4 运动控制模块与伺服单元及限位信号连接示意图
3. 软件结构和功能
整个软件是在National Instruments公司的面向对象的图形化编程语言LabVIEW 7.1下开发完成的,从上到下分为三层:高层通讯层,中层运动控制层,以及底层的驱动程序和开发环境支持。
底层开发环境和驱动程序接口是由软硬件厂商提供的,包括LabVIEW 7.1图形化编程环境和运动控制板卡的驱动程序。中层的运动控制层是在LabVIEW环境下编程实现电机的运动控制,包括电机运动位置、速度以及对于本系统整体的运动流程。高层的通讯层是用于将用户设置的各项参数传递到运动控制层,同时将用户所需信息如当前运动速度、剩余时间等反馈到用户界面。
4. 基于虚拟仪器的操作界面
本系统使用LabVIEW 7.1设计了友好的操作界面,如图5所示:
篇7:基于虚拟仪器技术的手机翻盖耐久性测试系统
测试程序操作步骤:
表1 操作界面控件功能
编号
名称
功能
1
User Type
指示当前的用户类型( Operator 、Engineer 、Administrator )
2
Cycle Counter
预先可设置的翻盖次数,系统运行到达上限时该平台停止运行。
3
Start Angle 1
End Angle 1
拨片的起始角度(如 180° )和终止角度(如 100° ),通过微调( Jog )过程来确定。
4
Start Angle 2
End Angle 2
拨杆的起始角度(如 0° )和终止角度(如 130° ),通过微调( Jog )过程来确定。
5
Velocity
电机运动过程中的最大速度。
6
Acceleration
电机启动与停止时的加(减)速度。
7
Time 1-2
拨片开始往回动作到拨杆开始动作之间的时间间隔。
8
Time 2-1
拨杆开始往回动作到拨片开始动作之间的时间间隔。减小上述 2 个参数可以有效加快系统的运行速度。
9
Current Cycle
输出指示当前时刻的翻盖次数。
10
Cycle/s
输出指示当前时刻每秒翻盖的次数。
11
Left Time (h)
输出指示到预设的翻盖次数所剩余的时间。
12
Load Setting
按该控件从指定的文件载入上述的控制参数。并使拨杆、拨片到达载入的文件中所制定的位置。此时该平台其它控件不可用。
13
Save Setting
按该控件将上述控制参数存入指定的文件。此时该平台其它控件不可用。( Operator 用户不可用)
14
Initialize
系统初始化。( Operator 用户不可用)
使拨片、拨杆到达预定的初始位置并停止。此时该平台其它控件不可用。
15
Jog
微调操作。( Operator 用户不可用)
按该控件弹出微调面板,用户可以将拨片、拨杆微调至理想位置。
此时该平台其它控件不可用。
16
Test/Continue
开始(继续)测试。有以下两种情况:
⑴ 前一操作为 Pause 时按该控件表示继续测试,参数 #8 在原来基础上继续增加。
⑵ 前一操作为 Stop 或到达预设上限停止时按该控件表示开始新测试,参数 #8 从 0 开始增加。
此时该平台仅有 Pause 和 Stop 可用。
17
Pause
暂停测试。
此时系统停止运行,参数 #8 保持不变。暂停后该平台除 Pause 和 Stop 其它控件均可用。
18
Stop
停止测试。
此时系统停止运行,参数 #8 为 0 。停止后该平台除 Pause 和 Stop 其它控件均可用。
19
Setting File
Path
设置读取或写入控制参数文件的默认路径。
20
Change User
按该控件改变用户身份,登录成功后相应权限会发生变化。
21
Config
配置 NI PXI-7344 Board ID 及各轴与电机间对应关系。除非硬件连接发生改动请不要随意使用该控件并修改面板设置,否则可能导致系统无法正常运行。(仅有 Administrator 用户可用)
22
Exit
退出系统。
1) 运行程序,系统自动以Operator登录。
2) 系统开始对运动控制模块进行初始化,完成后弹出对话框询问是否需要载入控制参数,若选No则系统自动载入上次退出程序时的设置并使拨杆、拨片到达相应位置。若选Yes系统继续弹出对话框询问需要载入哪套平台的控制参数。选定后系统载入相应配置文件并使拨杆、拨片到达相应位置。
3) 若所测手机型号已有相应配置文件存在,跳至5)步。若该型号为初次测试,则以Engineer登录。按Initialize控件使该平台初始化。
4) 按Jog控件进入微调模式。将夹具微调至理想的起始位置和终止位置并记下对应角度值。按OK控件回到主面板并将控制参数#2、#3改为微调得到的结果。按Save Setting将当前设置存成新型号的配置文件。
5) 按Test/Continue控件开始测试。
6) 此时有3种不同情况:
① 等待翻盖次数到达控制参数#1所设上限后该平台停止运行。
② 按Stop控件停止操作,控制参数#8复0。
③ 按Pause控件暂停操作,控制参数#8保持当前值,可以调整控制参数后继续测试。
7) 按Exit控件退出测试系统。
4. 结束语
本测试系统实现了对手机翻盖的耐久性测试,相对于传统的测试系统测试速度大大提高,并提供完善灵活的用户管理和系统设置功能。通过实际生产测试表明该测试系统工作状态稳定,提高了整个生产过程的效率。
篇8:基于虚拟仪器技术的车身控制器功能测试系统
基于虚拟仪器技术的车身控制器功能测试系统
介绍一种基于虚拟仪器技术的车身控制器功能测试系统,给出了该功能测试系统特点,基于工控机平台的硬件设计和基于Labview 8.2的'软件设计.
作 者:罗来军 奚晓华 贾鹤鹏 Luo Laijun Xi Xiaohua Jia Hepeng 作者单位:联创汽车电子有限公司 刊 名:上海汽车 英文刊名:SHANGHAI AUTO 年,卷(期): “”(4) 分类号:U4 关键词:测试系统 车身 汽车篇9:示踪剂测试技术的研究与应用
示踪剂测试技术的研究与应用
针对复杂断块油藏层系多,平面及纵向水淹不均衡,剩余油分析难度大等特点,采用微量物质水相示踪测试技术,通过增加示踪剂的'类型以及实施分层注水测试和多向受效监测,并建立油藏地质模型,利用数值法求解油藏各层压力和流线分布,最终定量描述剩余油的分布规律.通过矿场应用,说明这种方法简单实用,解释精度较高,在辛68-斜66井组取得了很好的效果.
作 者:俞萍 作者单位:胜利油田森诺胜利工程有限公司 刊 名:内江科技 英文刊名:NEIJIANG KEJI 年,卷(期):2009 30(2) 分类号:P61 关键词:多油层油藏 分层测试 压力场 流线场 剩余油篇10:虚拟仪器技术在发动机油耗测试中的应用
虚拟仪器技术在发动机油耗测试中的应用
针对传统油耗测试仪器存在的`问题,基于虚拟仪器技术用失重法原理设计了发动机油耗测试系统,系统由凌华IPC610工控机、DAQ2214多功能数据采集运动控制卡,调理电路、称重传感器、油箱、电磁阀及各路油管等组成,用LabVIEW进行软件设计.该系统可与电涡流测功机测控系统有机结合,形成发动机测控系统.
作 者:赖建生 孔凡静 Lai Jiansheng Kong Fanjing 作者单位:赖建生,Lai Jiansheng(北京理工大学珠海学院,519085)孔凡静,Kong Fanjing(珠海市第三中等职业学校,519070)
刊 名:中国科技信息 英文刊名:CHINA SCIENCE AND TECHNOLOGY INFORMATION 年,卷(期): “”(16) 分类号:U4 关键词:虚拟仪器 发动机油耗 失重LabVIEW virtual instrumentation engine fuel consumption weight-loss LabVIEW篇11:使用虚拟仪器技术应对新的电信测试挑战
应用领域:
手机测试
挑战:
中国的手机市场发展迅猛,世界各大手机厂商竞相争夺手机用户。在如此激烈的竞争中,手机的功能日趋丰富,比如摄像头、MP3、FM调频收音机等等。同时,手机通讯协议也层出不穷,GSM、CDMA、GPRS、CDMA、EDGE、WCDMA等等。为了应对产品的不断变化,工程师面临着提高效率并缩短产品市场化时间的挑战,他们需要一个灵活而强大的.通用测试平台。我们先来看一个通用测试平台针对手机通讯协议的变化而表现出来的优势。大家知道,2G的协议比如GSM和CDMA都已被成功地运用于市场了,而3G的协议比如WCDMA,CDMA2000等等是未来的必然趋势。在从2G到3G的转变中,面临客户群、设备置换、技术的成熟度风险等等问题。运营商希望能够进行平滑的过渡,在不丢失已有手机用户的情况下,首先升级交换网络部分,这使得用户可以使用过渡期的2.5G产品,然后等时机成熟时再升级无线网络部分达到3G的标准。2G的测试仪器已经比较成熟,3G的测试产品正在加紧开发,2.5G的专用测试设备却由于传统仪器制造商考虑到研发成本和市场前景的问题而匮乏。
一家著名的手机制造商制造了支持EDGE(Enhanced Data rates for GSM Evolution)协议的2.5G手机产品,需要针对这一产品的测试方案。EDGE是一个专业协议,由于它的出现时间比较短,了解它的人也比较少,要在短期内构建一个EDGE测试系统是一个巨大的挑战。为了在市场上与同行竞争,需要在一个月内能够使用这套测试设备。
应用方案:
利用TestStand模块化,兼容性强,可自定义的特点,根据生产测试的需要对其进行修改与完善,并结合LabVIEW,GPIB卡,以及相应的测试仪器,创建百分之百符合自己需要的CDMA基站测试系统。
使用的产品:
硬件上整个系统包含了一个PXI机箱,其中有:
NI PXI-8186
2.2 GHz Intel奔腾4处理器的嵌入式PC,预装Windows XP操作系统
NI PXI-5660
2.7GHz RF信号分析仪,9 kHz到2.7 GHz,20 MHz实时带宽,80 dB真实动态范围
NI PXI-5670
RF信号源,250 kHz到2.7 GHz,16位,100 MS/s任意波形发生,22 MHz实时带宽
NI PXI-5122
14位数字化仪,100 MS/s实时采样,2 GS/s随机间隔采样,100 MHz带宽
NI PXI-4070
6位半数字万用表,6 ppm精度
其中,NI PXI-5660被用作矢量信号分析仪,NI PXI-5670被用作射频信号源,NI PXI-5122被用作示波器,NI PXI-4070被用作数字万用表。
软件上使用了LabVIEW图像化开发环境和NI-DAQmx驱动程序。
注:所有文章下载后需用Adobe Acrobat Reader(5.0或更高版本)浏览
如果您需要印刷版的用户解决方案论文集,请在留言簿上登记,NI会尽快邮寄给您。欢迎您随时拨打
篇12:基于虚拟仪器的气动弹性振动测试与分析系统
基于虚拟仪器的气动弹性振动测试与分析系统
针对气动弹性试验的.需要,设计了基于虚拟仪器技术的振动测试与分析系统,主要用于频谱分析、模态辨识和颤振预测.系统的设计利用的是LabVIEW虚拟仪器开发平台及Matlab,内容涵盖振动信号的采集与分析处理.在地面振动试验和风洞试验中的应用实例验证了该套系统的有效性.
作 者:袁锐知 吴志刚 杨超 YUAN Rui-zhi WU Zhi-gang YANG Chao 作者单位:北京航空航天大学,航空科学与工程学院,北京,100191 刊 名:测控技术 ISTIC PKU英文刊名:MEASUREMENT & CONTROL TECHNOLOGY 年,卷(期): 29(6) 分类号:V215.3 关键词:气动弹性 模态辨识 颤振预测 虚拟仪器篇13:非金属超声测试技术初步研究
非金属超声测试技术初步研究
超声波在非金属测试中用途非常广泛.研究内容是实验室内超声检测技术试验,包括仪器稳定性、空气和混凝土块的超声测试.在深入调研相关资料和现有研究成果的'基础上,得到了一些有益的结论.
作 者:梁富会 LIANG Fu-hui 作者单位:广州诚安路桥检测有限公司,广东,广州,510420 刊 名:山东交通科技 英文刊名:SHANDONG JIAOTONG KEJI 年,卷(期):2009 “”(2) 分类号:U448 关键词:超声波 无损检测 首波声时法★ 长庆油田实习报告
★ 机械毕业论文
★ 试验室工作职责
★ 生化论文范文
【基于虚拟仪器的农业测试技术教学与研究(精选13篇)】相关文章:
德宏州农业环境保护监测工作总结2022-11-15
VXI总线与虚拟仪器技术2023-03-06
通讯科技在定位技术中的运用论文2024-03-26
浅论国有企业干部培训中专职教师工作的思考论文2023-07-09
技术人员职责技术岗位职责2022-06-03
基于Web的农机推广信息系统的研究与设计论文2022-12-25
技术人员岗位职责2023-02-06
水土保持监测抽样方法的思考的论文2022-05-06
建筑技术人员岗位职责2022-05-08
试验研究与统计分析课程教学改革探析论文2023-05-29