基于DSP和以太网的数据采集处理系统

时间:2022-10-09 07:41:43 其他范文 收藏本文 下载本文

基于DSP和以太网的数据采集处理系统(精选5篇)由网友“肥飞将军”投稿提供,以下是小编帮大家整理后的基于DSP和以太网的数据采集处理系统,供大家参考借鉴,希望可以帮助到您。

基于DSP和以太网的数据采集处理系统

篇1:基于DSP和以太网的数据采集处理系统

生产和科研领域对测试的要求越来越高,所需测试和处理的数据量也越来越巨大,有时需要多个测试仪器同时进行测试,各测试仪器之间又需要进行数据交换;而且测试领域也越来越广泛,有些现场不适合工作人员亲临,这时就需要通过网络进行控制。以太网技术在数据采集处理系统中的应用如图1所示。

与工业现场应用比较多的现场总线比较,以太网最大的特点是开发性好、成本低。通过把复杂的TCP/IP协议封装而提供各种网络测试技术,使网络测试的开发变得不再复杂。同时,由于网络测试带来巨大效益,使网络测试在测试自动化领域得到广泛应用。以太网作为分布式测试的一个网络方案,其潜力无疑是巨大的。

图1 数据采集处理系统中的以太网应用

以太网接口控制器和DSP微处理器的价格不断下降,使得将以太网直接集成到基于DSP等嵌入式系统的测试、采集、工业I/O设备中成为越来越明显的趋势。基于以太网的I/O设备是将以太网接口直接嵌入到设备内部,所以使得设备更简洁,体积更小,安装也更灵活。和一些目前应用于工业的其它通信方案比较,以太网方式通常需要功能更强大的微处理器和更大的内存。而网络和计算机技术的发展,特别是DSP技术的应用,可以大大降低这方面的成本。

2 数据采集处理系统的硬件设计

该系统以TI公司的TMS320C6000系列DSP中的TMS320C6211和10/100M自适应以太网控制芯片MX98728EC为核心,主要包括ADC数据采集、DSP数据处理和以太网接口三个部分。图2为数据采集处理系统框图。

2.1 TMS320C6000 DSP

TMS320C6000是美国TI公司于推出的新一代高性能DSP芯片。这种芯片是定点、浮点兼容的DSP。其定点系列是TMS32C62XX,浮点系列是TMS320C67XX。TMS320C6000片内有8个并行的处理单元,分为相同的两组,芯片的最高时钟频率可以达到300MHz。当芯片仙部8个处理单元同时运行时,其最大处理能力可以达到2400MIPs。本数据采集处理系统采用TMS320C6211,其主要特别如下:

相±

・每个周期8条32位指令

・8个高度独立的功能单元,包括6个32/40位的运算器和2个16位的乘法器(32bit结果)

・32个32位通用寄存器

图2 数据采集处理系统框图

・灵活自由的数据/程序定位,L1/L2存储器结果:4K字节L1P程序Cache、4K字节的L1D数据Cache、64K字节L2通用RAM/Cache

・32位外部存储器接口(EMIF):对异步存储器的无缝接口,如SRAM、EPROM;对同步存储器的无缝接口,如SDRAM、SBSRAM;共512M字节外部存储器可寻址空间

・增强的DMA(EDMA控制):16个独立通道

・两个32位通用定时器

・支持JTAG边界扫描标准,调试时可以方便可靠地控制DSP上面的所有资源

2.2 以太网控制器MX98728EC

MX98728EC是一个通用的单片10/100M快速以太网控制器,通过它的主机总线接口,可以实现各种各样的应用,而不需要或者只需极少的外部控制逻辑。单片机的解决方案可以减小电路板的尺寸,减少板上芯片的数量,以降低系统的成本。MX98728EC的特点如下:

・32位通用异步总线结构,支持频率最高达33MHz

・单片解决方案,集成了10/100M TP收发器

・可选的外部收发器MII接口

・完全兼容IEEE 802.3u协议

・支持16/8bit打包缓冲数据宽度和32/16bit主机总线数据宽度

・分离的TX和RX FIFO,支持全双工模式,独立的TX和RX通道

・丰富的片上寄存器,支持各种各样的网络管理功能

・支持16/8bit的用于打包缓冲器的SRAM接口、支持片上FIFO的突发DMA模式

・自动设置网络速度和协议的NWAY功能

・可选的EEPROM设置,支持1kbit和4kbit的EEPROM接口

・支持软件EEPROM接口,方便升级EEPROM的内容

图3 DSP和以太网接口部分硬件设计

2.3 系统结构

2.3.1 ADC数据采集部分

CPLD1由DSP提供时钟信号,主要作用是提供扫描表SRAM的地址,扫描表SRAM的数据由DSP写入。扫描表输出的数据用来设定A/D转换的`通道和仪表放大器的增益。ADC采用14位的LTC1416。32路模拟信号通过多路复用器后,其中一路信号被选中,进入仪表放大器,放大之后进入ADC。ADC的转换时钟由DSP的定时器提供。

2.3.2 DSP数据处理部分

ADC转换后的14位数据通过FIFO进入DSP进行处理,FIFO采用4片CY7C425形成乒乓结构,以实现模拟信号的不间断采样。DSP扩展一片Flash Memory作为DSP的程序存储器,另外还扩展了一片SRAM作为程序缓存。脱机运行时,DSP将Flash中的程序写入SRAM,再写入DSP内部RAM。CPLD2主要用于控制FIFO的读写,并且提供以太网接口部分的控制信号。DSP系统中的数字信号处理算法主要实现滤波、采样率变换、非线性修正、温漂修正等。

2.3.3 以太网接口部分

以太网主控芯片MX98728EC通过RJ45接口连接以太网,扩展一片SRAM作为以太网数据收发存储器,另外又扩展一片EEPROM以存储以太网卡的MAC地址、IO基地址、中断线选择等配置寄存器的初始化数据。CPLD3通过DSP高位地址线的译码控制以太网芯片的片选并提供以太网接口部分的复位信号等。DSP和以太网的接口部分硬件如图3所示。

(本网网收集整理)

3 数据采集处理系统的软件设计

软件编程时应该充分利用硬件资源及开发工具,使代码达到所期望的性能,并且在DSP嵌入式系统的基础上集成已经封装的TCP/IP协议栈,增加网络连接代码。由于DSP系统硬件以及以太网协议的复杂性,本系统中的软件编程是一个难点。

在本系统的软件设计过程中,采用了TI公司的基于C6000系列DSP的实时操作系统DSP/BIOS以及DSP/BIOS提供的实时数据交换功能RTDX(Real-Time-Data-eXchange)。DSP/BIOS针对DSP的应用环境,通过一系列的对象模块向开发者提供了一个实用优秀的实时操作系统。它可以寿命用户提高软件的模块化程度、并行性和可维护性等,有利于降低系统成本和缩短开发周期,运行于该操作系统之上的应用程序在开发时间、软件维护、升级等方面都有了极大的提高。实时数据交换功能是DSP/BIOS提供的一个全新的功能。在很多应用中要求DSP不停下来,而需要从主机中实时地读取数据或者向主机实时地输出数据。

因为本系统的软件结构较为复杂,涉及的算法较多,故应采用模块化、由顶向下、逐步细化的结构化程序设计方法。这一方法可节省软件工作量、提高工作效率。图4为简化的数据采集处理程序流程图。

实践证明,根据以上方案设计基于DSP和以太网的数据采集处理系统,可以很好地实现对模拟信号的采集和处理。在此基础上,也可以将其作为其于DSP和以太网的网络测试平台开发过程中的调试工具,从而加速把以太网集成到测试、采集和工业I/O仪器中的开发进程。

篇2:基于DSP和以太网的数据采集处理系统

摘要:介绍了一种基于DSP和以太网的数据采集处理系统。论述了数据采集处理系统中的以太网应用,介绍了系统的硬件设计方案,提出了基于实时操作系统DSP/BIOS进行软件设计的思路和实现方法。

关键词:DSP 以太网 数据采集 实时

随着测试技术的不断发展,低功耗、高性能的DSP逐渐取代了通用单片机在数据采集处理系统中的地位;同时,以太网技术也在数据采集、测试测量技术中发挥越来越大的作用。本文从软件、硬件出发,介绍一种基于DSP和以太网的数据采集处理系统的设计思想及实现。

篇3:基于DSP和以太网的数据采集处理系统

生产和科研领域对测试的要求越来越高,所需测试和处理的数据量也越来越巨大,有时需要多个测试仪器同时进行测试,各测试仪器之间又需要进行数据交换;而且测试领域也越来越广泛,有些现场不适合工作人员亲临,这时就需要通过网络进行控制。以太网技术在数据采集处理系统中的应用如图1所示。

与工业现场应用比较多的现场总线比较,以太网最大的特点是开发性好、成本低。通过把复杂的TCP/IP协议封装而提供各种网络测试技术,使网络测试的开发变得不再复杂。同时,由于网络测试带来巨大效益,使网络测试在测试自动化领域得到广泛应用。以太网作为分布式测试的一个网络方案,其潜力无疑是巨大的。

图1 数据采集处理系统中的以太网应用

以太网接口控制器和DSP微处理器的价格不断下降,使得将以太网直接集成到基于DSP等嵌入式系统的测试、采集、工业I/O设备中成为越来越明显的趋势。基于以太网的I/O设备是将以太网接口直接嵌入到设备内部,所以使得设备更简洁,体积更小,安装也更灵活。和一些目前应用于工业的其它通信方案比较,以太网方式通常需要功能更强大的微处理器和更大的内存。而网络和计算机技术的发展,特别是DSP技术的应用,可以大大降低这方面的.成本。

2 数据采集处理系统的硬件设计

该系统以TI公司的TMS320C6000系列DSP中的TMS320C6211和10/100M自适应以太网控制芯片MX98728EC为核心,主要包括ADC数据采集、DSP数据处理和以太网接口三个部分。图2为数据采集处理系统框图。

2.1 TMS320C6000 DSP

TMS320C6000是美国TI公司于推出的新一代高性能DSP芯片。这种芯片是定点、浮点兼容的DSP。其定点系列是TMS32C62XX,浮点系列是TMS320C67XX。TMS320C6000片内有8个并行的处理单元,分为相同的两组,芯片的最高时钟频率可以达到300MHz。当芯片仙部8个处理单元同时运行时,其最大处理能力可以达到2400MIPs。本数据采集处理系统采用TMS320C6211,其主要特别如下:

[1] [2] [3] [4]

篇4:基于DSP的多超声测距数据采集处理系统

基于DSP的多超声测距数据采集处理系统

摘要:介绍了自行设计的移动机器人CASIA-I中超声测距系统的软、硬件,以及超声测距数据与上位机通信的设计和实现过程。该系统以DSP-TMS320LF2407A作为核心处理器,以CAN总线为基础,实现了上述功能。经实验验证,测距范围为0.45m~3.5m,系统测距精度在0.7%以内,可以满足移动机器人室内导航的要求。

关键词:移动机器人DSP超声测距CAN总线通讯

移动机器人要实现在未知和不确定环境下运行,必须具备自动导航和避障功能。在移动机器人的导航系统中,传感器起着举足轻重的作用。视觉、激光、红外、超声传感器等都在实际系统中得到了广泛的应用。其中,超声波传感器以其信息处理简单、速度快和价格低,被广泛用作移动机器人的测距传感器,以实现避障、定位、环境建模和导航等功能。

传统的轮式移动机器人超声数据采集系统大多采用单片机作为微处理器,以此来测量移动机器人到障碍物的距离,并将距离通过串口传输到上位机。采用这种设计,系统制造简单、成本低。但是,对于多超声传感器测距系统,如果仍采用单片机来完成测距任务,由于系统中超声传感器数量较多,为保证系统的实时性,就需要多个单片机才能完成数据采集,这使得采集系统不可避免地存在设计复杂和一延续算法难以实现等缺陷。随着微电子工艺的发展,数字信号处理器(DSP)的应用领域已从通信行业拓展到工业控制领域。TI公司推出的TMS320LF2407A的专门针对控制领域应用的DSP,它具有高速信号处理和数字控制功能所必需的体系结构,其指令执行速度高达40MIPS,且大部分的指令都可以在一个25ns的单周期内执行完毕。另外,它还具有非常强大的片内I/O端口和其它外围设置,可以简化外围电路设计,降低系统成本。正是基于种思想,中国科学院自动化研究所在国家“863”计划的支持下,利用多DSP和嵌入式PC104自动设计和研制了轮式移动机器人CASIA-I。本文着重介绍其超声数据采集系统,同时对通过CAN总线完成的超声数据与上位机通讯的原理和设计过程进行分析说明,并给出实验结果。

图1超声数据采集硬件原理图

1超声测距原理

超声测距的原理较简单,一般采用渡越时间法,即:

D=ct/2(1)

其中D为移动机器人与被测障碍物之间的距离,c为声波在介质中的传输速率。声波在空气中传输速率为:

其中,T为绝对温度,c0=331.4m/s。在不要求测距精度很高的情况下,一般可以认为c为常数。渡越时间法主要是测量超声发射到超声返回的时间间隔t,即“渡越时间”,然后根据式(1)计算距离。

2系统硬件设计

在距地面高度为45cm、相隔为22.5°的同一环上均匀分布着16个Polaroid生产的超声传感器,其编号为1#~16#(逆时针安排),超声传感器波束角为30°,超声传感器的最小作用距离为0.45m。超声数据采集板主要有两大模块:一是16路超声器的超声波发射和回波的接收模块,二是与上位(机器人中央控制器)的CAN总线通讯模块。其硬件结构见图1。

TMS320LF2407向I/O端口发出控制信号,启动内部定时器进行计时。此控制信号功率放大后作为超声传感驱动电路启动信号(INIT),超声传感器产生的、遇到障碍物时返回的高频振荡信号经放大(为弥补传播过程中信号的衰减)使超声传感驱动电路的ECHO端产生高电平脉冲。ECHO电平变化经过门电路后引起TMS320LF407A外部中断,在中断程序内获取定时器的计数值,根据式(1)计算距离;否则,认为传感器前方探测范围内无障碍物。

图2超声测距数据采集程序框图

因为超声传感器之间的安装位置相差22.5°,而超声传感器的波束角为30°,如果超声波同时发射,必须会有干扰。如果采用轮循方式,即一个接一个地发射超声波,虽然可以消除串扰回波的影响,但是16个超声传感器轮循一次周期较长,降低了采集频率。为了在不降低采集频率的同时消除超声的相互干扰,本系统将16个超声传感器分成A(1#、3#、5#、7#、9#、11#、13#、15#)和B(2#、4#、6#、8#、10#、12#、14#、16#)两组,因为同一组内的两个超声传感器安装位置相差45°,通过计算可以知道,这种情况下超声传感器同时工作不会产生干扰,因而每一组里的超声传感器同时工作,组与组之间则采用轮循方式工作。这样既可以到很高的采集频率,同时也满足了系统的实时性要求。每组8个超声传感器的ECHO端分别连接到一门电路,然后通过门电路连接DSP的XINT1和XINT2端。XINT1/2引脚电平发生跳变时会产生外部中断,通过I/O口可以知道是哪个或哪几个传感器引起中断。

TMS320LF2407A内部集成了CAN控制器,通过它可以方便地构成CAN控制局域网络。TMS320LF2407A的CANTX和CANRX接口与CAN收发器SN65HVD230相连,通过SN65HVD230连接CAN总线。SN65HVD230是TI公司生产的专门针对240X系列DSP内CAN控制器与物理总线的接口。它的供电电压和TMS320LF2407A一样,仅为3.3V。由于CAN总线的数据通信具有突出的可靠性、实时性和灵活性,最高传感速率可达到1Mbps。超声采集板的数据能够快速、可靠地传给中央控制器。

3软件设计

系统软件主要由两部分构成,即超声数据采集与处理模块、CAN总线通讯模块。

3.1多路超声传感器数据采集模块

超声传感器被分为两组,两组循环交替工作。软件设计上采用两个定时器依次工作,分别对两组传感器进行计时。选择定时器的周期比超声传感器探测最大距离所需的渡越时间稍长。在每个定时器周期开始时,触发一组超声传感器同时开始工作。在定时器周期内,每个回波返回,都会触发一次外部中断(XINT1或XINT2中断),在外部中断处理程序内,将超声波返回时间进行纪录,并将相应的超声传感器关闭。外部中断处理程序非常简短,本系统只用了不到20条指令,并且TMS320LF2407A指令执行速度很快,因而即使因进入外部中断处理程序而延误了对后来回波的处理,但这种延误的时间根据计算不大于0.5μs,由此引入的距离误差根据(1)式计算小于83.5×10-6m。可见误差非常小,可以忽略不计。当定时器中断时,对于距离大于最大超声探测范围的,没有相应的时间记录,给它们加上超出测距范围的标志。其它的`时钟数据都有记录,根据(1)式计算距离,然后启动下一个定时器工作,并触发下一组超声传感器。本文的超传感器的最大探测距离为3.5m,因而超声波探测的最长时间为20.58ms。所以每个定时器的周期选为20.6ms。图2只画出了一组超声传感器的处理框图,另一组与此相,不再多述。

表1超声测距系统测量值与实际值单位:cm

实际值456075100125150175200测量值43.2661.4774.76100.17125.9.84174.63200.78实际值225250275300325350测量值224.11251.7276.9297.8322.7352.5

由于受环境温度、湿度的影响,超声传感器的测量值与实际值总有一些误差,表1列出了本超声测距系统测量值与对应的实际值。采用最小二乘法对表1的数据进行拟合,结果为:

y=0.9986x+0.2111

式中,x为测量值,y为实际值。

3.2基于CAN总线的数据通信

超声数据采集板发送测距数据以中断的方式完成。TMS320LF2407A有专门的mailbox中断,用于响应发送/接收中断。每个超声传感器的测距值在DSP内用两个字节存储,而CAN总线传输标准要求每个数据帧最多只能传输8个字节的数据。本系统共有16个超声传感器,共有32个字节存储所有测距值。CAN总线传输所有测距值需要4个数据帧才能传送完。本系统的通讯过程为:中央控制器发送远程请求,超声数据采集板进入接收中断,在中断服务程序内,采用查询方式发送4帧数据,每帧数据包含4个超声传感器的测距值。本系统采用的滤特率是500kbps。TMS320LF2407A用mailbox0接收中央控制器的远程请求帖,用mailbox2发送测距数据值。图3是超声数据采集板的发送数据中断服务程序框图。其中,TA2是对应mailbox2发送数据帧完成标志位,RMP0是对应mailbox0接收数据帧的标志位。关于TMS320LF2407A的CAN模块的具体说明。

图4中央控制器接收子程序框图

中央控制器接收子程序由VC++编写。当机器人需要新的测距值时,即调用此子程序。程序框图见图4。接收程序收到一帧数据后,判断数据是否有错,若有错,则向采集板发送命令,要求重发此帧数据;若正确,发送确认命令,要求采集板发送下一组数据,直到所有的超声测距数据都接收完。

本文介绍的超声数据采集系统采用TMS320LF2407A为核心处理器,可以达到很高的采集速率和精度。通过CAN总线通讯,可以将测距值以很高的滤特率可靠地发送给机器人中央控制器。此系统已经在自行设计的智能移动机器人CASIA-I上得到了实际应用。实验验证了硬件系统的可靠性和算法的有效性。

篇5:基于DSP和光缆通信的远程高速数据采集及处理系统的设计与应用

基于DSP和光缆通信的远程高速数据采集及处理系统的设计与应用

摘要:介绍一种以TMS320VC5402DSP为核心处理器的高速远程数据采集与处理系统。该系统以分时采集方式对多路模拟信号进行数据采集,采样率达40MHz。经过高速处理器的实时处理,通过光缆将数据传送到主控计算机端,作进一步处理与分析。该系统可以广泛应用于需要较高频率远程模拟信号的采集处理场合。

关键词:远程数据采集DSP光纤通信信号处理

随着数字信号处理技术及通信技术的发展,DSP技术应用越来越广泛。将DSP技术应用于高速数据采集,可以对采集数据进行实时处理,同时将高速光缆通信技术应用于远程数据采集的数据传递,能够使采集的大量信号高速可靠地传递至主控计算机作进一步的分析处理。本文介绍了一种使用TMS320VC5402作为处理器,用高速A/D转换芯片进行数据采集与处理,使用光缆进行数据通信的高速远程数据采集板。将此采集板应用于油田超声波测井系统,为探测油井下内壁、壁厚以及油井外固井水泥环的情况提供充分的数据基础。

作为一个使用DSP芯片作为处理器的远程数据采集系统,不但要完成数据的采集工作,而且还要能够对数据进行实时处理,然后将数据传递至远处控制端。同时,数据采集部分还要能够接收远端控制端发出的命令,及时对数据采集进行总体上的控制。

此远程数据采集系统需要完成的基本功能是:接收地面主控计算机发出的控制命令,自动完成多路超声波电信号的采集工作:将信号放大,滤波处理后数字化,经过短暂存储及初步处理,将数字化的超声波信号分组,传递至地面主控计算机,供分析软件进行数据分析。

1系统硬件的设计

整个系统由数据采集和计算机控制卡两部分组成。数据采集部分完成超声波信号的放大、滤波、模数转换以及处理和传输控制;计算机控制卡接收由数据采集卡经过光缆传递的数据信号,送至计算机PCI总线,由处理软件进行数据处理。PCI控制卡经过控制软件向数据采集卡发送数据采集命令,使数据采集卡根据命令改变工作状态。

1.1数据采集卡的硬件设计

图1为数据采集卡部分的电路原理图。由于数据采集板工作在恶劣的环境中,要求硬件电路保证完成尽可能多工作的同时,使用尽可能少的器件,以保证采集板能够长时间地稳定工作。

数据采集板的核心处理器是TMS320VC5402。该芯片是TI公司TMS320VC54x系列的DSP芯片,是为实现低功耗、高性能而专门设计的定点DSP芯片,主要应用在通信、数据采集等系统中。该芯片采用CMOS制造工艺,属于第七代DSP产品,它的工作频率可以根据需要进行调整。

由于TMS320VC5402芯片内部不带FLASH程序存储器,因此,在采集板上要让FLASH存储器保存程序。使用的芯片是SST39VF400A。此芯片是SiliconStorageTechnology生产的256K字节的16位FLASH存储器。在电路启动时,由TMS320VC5402内部ROM中的引导程序将存储在FLASH中的工作程序转移到SRAM中,提高程序运行效率,降低对外部ROM的速度要求。这样,不仅可以提高系统硬件的成本,而且可以提高系统的整体抗干扰性。

TMS320VC5402DSP芯片内带16K字节的RAM,其中一部分用来运行程序,另外一部分可以用来存储临时数据,片内的RAM存储器不能满足数据存储容量的要求,因此在采集板上还要扩充一部分SRAM。此采集卡上使用的SRAM芯片为CY7C1021。此芯片是Cypress公司生产的16位64K字节的静态RAM存储器,采用CMOS工艺,具有自动低功耗模式的功能,降低系统功耗,保证低散热量。

A/D转换电路使用TLC5540模数转换芯片,这是TI公司的8位A/D转换器,它的最高转换速率可以达到每秒40兆字节。TLC5540采用了一种改进的半闪结构,使用CMOS工艺,因而大大减少了器件中比较器的数量,而且在高速转换的同时,能够保持低功耗,在推荐的工作条件下,其功耗仅为75mW。使用TLC5540进行数据采集的控制信号由TMS320VC5402产生,采样时钟经过5402的CLKOUT端口分频得到。当采集卡进行数据采集时,首先DSP芯片选通要采集的模拟信号通路,将经过处理的模拟信号送至TLC5540的模拟输入端口,然后DSP芯片通过地址使能转换芯片TLC5540,控制转换芯片进行模数转换,将模拟信号转换为数据量,送至数据总线。由于TLC5540是8位模数转换芯片,因此只将8位数字信号送至数据总线的低8位上,由DSP芯片进一步处理。

远程数据采集,采集端与控制端之间必须要使用高速通信电路,使得两端能够及时通信。在本采集系统中,为解决高速数据传输的问题,选用了光缆进行数据传输。现代光通信技术的发展,已经使光纤通信的速率可以达到每秒钟几G比特,中继距离也可达几百千米,因此使用光缆进行数据通信,无疑是解决高速率远距离数据传输问题的好方法。由于光缆本身的物理性质,其自身比较脆弱,但是可以在光纤外面使用钢缆或钢丝网进

行加固,使得光缆的外部物理特性大大增强,保障数据的可靠传输。

电气电路和光缆之间的接口使用光端机,光端机的输入输出接口是串行通信接口,使用非平衡传输方式进行数据输入输出。在DSP芯片与光端机通信模块之间,必须将总线上的并行数据串行化,转换为串行数据,以便光端机进行光通信。DSP接收信号时必须将光端机输出的串行信号反串行化,转换为并行数据,进行处理。光缆通信的速率比处理器的处理速率要高,因此,在串行器、反串行器和处理器的数据总线之间要加入先进先出存储器,将数据暂时存储,等积累了一定数量的数据之后,由串行化器进行发送或者处理器接收反串行化器送来的光缆上的数据。

在数据总线和串行化器/反串行化器之间加入FIFO,对于数据传输效率有很大的提高。IDT72V02是IDT公司生产的低电压CMOS异步先进先出存储器,有1024×9字节的存储空间,可以保存1K的9位字节数据。在本设计中,数据总线上的数据为八位数据,因此只使用了FIFO中的低八位数据作为有效数据,第九位数据用作校验位。串行化与反串行化芯片选用了TI公司的SN65LV1021/1212,这两个芯片是10:1和1:10串行化/反串行化芯片,并行数据可以在10MHz~40MHz时钟下传输,相应的串行数据可以在100bps~400bps的速率下传输。SN65LV1021/1212均能够工作在低功耗方式下,不传递数据时,可以降低整个系统的功耗,输出数据总线可以保持高阻抗状态。

由于TMS320VC5402的通用I/O接口比较少,因此数据采集板上使用了一片CPLD作为通用I/O的扩展接口。DSP芯片将A/D转换器、FIFO、串行化/反串行化器等器件都作为统一的外设,对每一外设进行地址编码。通过CPLD将DSP的外设操作信号转换为对具体芯片的'控制信号。这样在程序的效率以及整体电路工作的协调性上都有了很大的提高。

1.2地面PCI总线控制卡的硬件设计

为了方便地面计算机对数据采集卡进行实时控制,高速接收数据,因此设计一块PCI卡,将从光缆送来的数据直接送至计算机的PCI数据总线是一种高效且实用的方法。

光端机接收光缆传递的光信号,由反串行化器将串行数据转换为并行数据,送至存储器进行暂时存储,再将整个数据段送至计算机PCI总线,由软件进行处理并存储至硬盘。

PCI卡的主要芯片为PLX公司的PCI9052。该芯片在PCI总线接口芯片市场有相当的份额,是在PCI从模式接口设计卡中得到广泛应用的接口芯片,可以提供用于适配卡的小型而高性能的PCI总线目标,实现PCI数据总线上的33MHz的数据传输。PCI9052的主要特点有:

(1)进行数据接收时,PCI卡通过光端机接收由光纤送来的光信号,转换为串行电信号由光端机接口送出,经过SN65LVDS1212反串行器转换成并行信号,由控制器送入到FIFO中缓存。当接收完一个数据包后,由PCI9052将数据包中的数据送到计算机PCI总线,系统软件将接收的数据进行分析,并根据需要保存到硬盘。

(2)当计算机控制采集卡进行数据采集时,计算机软件向总线发出命令,PCI卡接收到系统软件送至PCI总线上的数据后,转送到串行器的数据总线上,将并行数据转化为串行数据,经光端机转化为光信号,送至光缆向采集卡进行传输。

2系统软件的设计

远程数据卡的实时系统控制软件包括两部分:采集卡上DSP控制及数据处理软件;上位机接收并处理DSP发送来的数据的实时处理控制软件。

固化在采集板上的DSP处理程序是软件部分的主体,程序主流程图如图2所示。

软件采用模块化的设计方法,其中包括采集卡的初始化、定时器处理、数据采集控制、数据处理,以及接收和发送数据几个模块。采集卡启动DSP芯片首先通过BOOTLOADER程序将存储在FLASH中的程序代码转移到RAM中,高速运行程序。程序首先进行初始化,然后由DSP本身完成对数据的自动采集,计算机并不参与采集的具体过程。采集后的数据暂时存储在RAM中,当采集到一定数量的一组数据,由DSP芯片对数据根据需要进行处理。例如,对信号进行互相关、自相关、功率谱、互谱、压缩算法等分析计算,减少传输过程以及上位机的负担。经过处理获得数据,DSP芯片将其按照一定的协议送至传输总线,控制串行化器通过光端机将其传送至上位主机,以进一步分析、处理数据。DSP程序使用CCS集成开发环境开发,编程语言使用C语言与汇编语言相结合的方法,程序整体使用C语言编写以提高程序开发周期。对于实时性要求强或比较复杂的算法,为提高DSP代码芯片的执行效率,使用汇编语言编写。

上位机的软件编写包括PCI卡驱动程序和应用程序两部分。在Windows操作系统下,普通用户不能进行直接读写物理地址和读取系统分配的资源信息的底层硬件操作,因此,在硬件设施完备的基础上,编写PCI接口卡的驱动程序,是上位机工作软件中的一个重要环节。使用Jungo公司的Windriver开发工具编写本PCI卡的驱动程序。该程序为一般的用户应用程序提供了一个很好的底层硬件接口,对于实时性要求不很严格的情况下,应用程序能够直接对底层硬件进行操作。由于本系统的数据采集工作完全由采集卡上的DSP自动控制完成,计算机对采集卡的控制只是一些工作方式的控制选择,因此对于PCI卡的时序要求并不十分严格,使用Windriver开发PCI卡的驱动程序完全可以满足需要。

用户应用程序使用高级语言进行开发,通过Windriver提供的接口,程序控制者可以利用对PCI卡的操作向采集卡

发出控制命令,同时接收PCI卡送来的采集数据信息,对数据进一步处理、存储。

3试验结果

在实际的油井测量实验中,选用1MHz的超声波信号,对5.5英寸的套管井进行测量,用10MHz的采样率对超声波信号进行采样。采集接收到的超声波数据,计算机上得到的数据经过转换和处理,可以为超声波测井提供充分的依据。如图3所示。

4设计中需要注意的问题

采集卡的设计过程中,主要问题在于硬件电路的设计。DSP芯片是高速数据处理芯片,外部总线的速率若达到40MHz,内部的时钟则可以达到更高。因此设计上要充分考虑DSP芯片引脚的外接方式和工艺特性。采集卡上有数字和模拟两种信号系统,在设计时要将数字信号和模拟信号电气上相互隔离,距离要尽量远,减少两种信号之间相互干扰。在每个元件的电源引脚附近都要加上一个小滤波电容,减小电源的不稳定因素。系统的电源设计要使用响应快、稳定性好、精度高的电源芯片,电源输出加上大的滤波电容以提高整个电路板的稳定性。尽量选用贴片封装的元件,减小元件本身散热量的同时增加电路焊接的可靠性以及抗干扰性。元件分布版面设计时,元件在电路板上的质量分布要均匀,以增加电路板的机械性能。

本文介绍了一种基于DSP芯片、通过光缆进行数据传递的高速远程数据采集系统,设计了一套完整的远程高速数据采集方案。该方案在强大的DSP处理器控制下利用高速A/D芯片完成多路模拟信号的分时采集工作,采集后的数据可以进行实时处理与高速传输。将该数据采集卡应用于油田超声波测井系统,对超声波测井信号进行高速采集,送至计算机进行数据分析处理,为测井工作提供了充足的数据基础。

DSP与单片机的一种高速通信实现方案

双处理器在变电站监控中的应用研究论文

本科电子商务毕业设计开题报告

物业薪酬体系优化设计的思路与实现论文

可编程控制器在船舶减摇鳍随动系统中的应用

UCTD系统及其关键技术介绍

性能的近义词

探析运动控制新技术论文

嵌入式系统的实习报告

公司心得体会范文大全

基于DSP和以太网的数据采集处理系统
《基于DSP和以太网的数据采集处理系统.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【基于DSP和以太网的数据采集处理系统(精选5篇)】相关文章:

摄像头作文2023-08-10

汽车新技术论文2022-09-19

嵌入式系统低功耗软件技术分析论文2022-11-04

嵌入式实习总结2023-02-11

如何面对专业和行业的矛盾?2023-07-30

计算机数控系统通信技术2023-09-25

网络缩略语探析2023-12-04

探析综合布线技术的热点问题2022-11-04

电子工程师年终工作总结2022-08-15

基于80C196单片机的某红外预警设备控制系统的设计与实现2022-05-02

点击下载本文文档