10kV配电网的无功优化补偿探讨(共9篇)由网友“Eli”投稿提供,下面是小编整理过的10kV配电网的无功优化补偿探讨,欢迎阅读分享,希望对大家有所帮助。
篇1:10kV配电网的无功优化补偿探讨
1.功率因数和无功功率补偿的基本概念
1.1功率因数:电网中的电气设备和电动机、变压器等属于既有电感又有电阻的电感性负载,电感性负载的电压和电流的相量间存在着一个相位差,相位角的余弦COSφ即是功率因数,它是有功功率与视在功率之比即COSφ=P/S.功率因数是反映电力用户用电设备合理使用状况、电能利用程度及用电管理水平的一个重要技术指标,
1.2无功功率补偿:把具有容性功率的装置与感性负荷联接在同一电路,当容性装置释放能量时,感性负荷吸收能量,而感性负荷释放能量时,容性装置吸收能量,能量在相互转换,感性负荷所吸收的无功功率可由容性装置输出的无功功率中得到补偿。
2.无功补偿的目的与效果
2.1补偿无功功率,提高功率因数
在电网运行中,因大量非线性负载的运行,除了要消耗有功功率外,还要消耗一定的无功功率。负荷电流在通过线路、变压器时将会产生功率与电能损耗,由电能损耗公式可知,当线路或变压器输送的有功功率和电压不变时,线损与功率因数的平方成反比。功率因数越低电网所需无功就越多,线损就越大。因此,在受电端安装无功补偿装置,可减少负荷的无功功率损耗,提高功率因数,降低线损耗。
2.2提高设备的供电能力
由P=S.COSφ可以看出,当设备的视在功率S一定时,如果功率因数COSφ提高,上式中的P也随之增大,电气设备的有功出力也就提高了。
2.3降低电网中的功率损耗和电能损失
由公式I=P/(3.U.COSφ)可知当有功功率P为定值时,负荷电流I与COSφ成反比,安装无功补偿装置后,功率因数提高,使线路中的电流减小,从而使功率损耗降低:ΔP=I2R降低电网中的功率损耗是安装无功补偿设备的主要目的。
2.4改善电压质量
在线路中电压损失ΔU的计算公式如下:
式中:ΔU――线路中的电压损失kV
P――有功功率MW
Q――无功功率Mvar
Ue――额定电压KV
R――线路总电阻Ω
XL――线路感抗Ω
由上式可见,当线路中的无功功率Q减少以后,电压损失ΔU也就减少了,
备考资料
2.5减少用户电费开支,降低生产成本。
2.6减小设备容量,节省电网投资。
3.无功补偿容量的选择
3.1按提高功率因数值确定补偿容量Qc.
式中,P―最大负荷月的平均有功功率KW
COSφ1COSφ2――补偿前后功率因数值。
例如:某加工厂最大负荷月的平均有功功率为300KW,功率因数COSφ=0.6,拟将功率因数提高到0.9,则所选的电容器容量为:
3.3按感应电动机空载电流值确定补偿容量。
电动机的无功补偿一般采用就地补偿方式,电容器随电动机的运行和停止投退,容量以不超过电动机空载的无功损耗为宜,计算公式:
式中Ue――电动机额定电压(kV)
Io――电动机空载电流可用钳形电流表测出,若粗略估算,也可用下式:
Qc=(1/4~1/2)Pn
式中Pn――电动机额定功率KW
3.4按配电变压器容量确定补偿容量
配电变压器低压侧安装电容器时,应考虑以下原则:在轻负荷时,防止向10KV配电网倒送无功,以取得最大的节能效果,根据配变容量按下式计算:
Qc=(0.10~0.15)Sn(Kvar)
Sn――配变容量kVA
总之,无功补偿设备的配置,应按照“全面规划,合理布局,分级补偿,就地平衡”的原则,要把降损与调压相结合,以降损为主;又要把集中补偿与分散补偿相结合,以分散补偿为主;同时,供电部门补偿与用户补偿相结合,以就地平衡为主,共同搞好无功补偿的配置和管理,从而取得无功补偿的最大经济效益。
更多建筑类经验免费阅读下载请访问:www.shangxueba.com/store_m_706634_23236_1_1.html
篇2:配电网无功补偿优化规划的论文
摘 要:将目标函数确定为节点电压质量、无功补偿设备投资以及配电网电能损耗等,将配电网无功规划优化数学模型在最大负荷运行的方式下建立起来。针对配电网具有较多的待补偿节点和分支的特点,将一种具有最小无功电流损耗的算法提了出来,从而对补偿电容器的位置和个数进行优化,然后以此为基础与改进的遗传算法结合起来,使无功规划优化的效率和精度得到进一步的提升。
关键词:遗传算法;无功规划优化;配电网
并联电容器组是主要的配电网无功补偿设备,将电容器组的安装容量安装位置以及补偿点的个数科学合理地确定下来,可以确保实现提升电压质量和降低网损的目的。配电系统具有较大的负荷分散性,再加上具有较多的带补偿点和较长的供电半径,因此在无功配置方面具有较为独特的地方。为此,本文分析并介绍了基于遗传算法的配电网无功补偿优化规划。
篇3:配电网无功补偿优化规划的论文
配电网无功补偿的灵敏度分析法可以将几个具有较高灵敏度的节点选择出来作为待补偿点,从而使解空间得以减小,然而该方法在实际上往往是同1条支路相邻的几个节点具有较高的灵敏度,而且一般只有一个节点在这几个节点中属于真正的高灵敏度的节点,该节点也会影响到其他节点的灵敏度。与此同时,灵敏度分析法又很难将补偿点的个数确定下来。如果以节点无功裕度值大小为根据将补偿点确定下来,这种方法也存在着很难将补偿点个数确定下来的`问题。也有采用N点分散补偿的方法,这种方法利用等面积判据以及等长度判据为根据将补偿点的容量和个数等确定下来,然而这种方法需要保证负荷数据的精确性,从而对各负荷点峰值无功电流进行计算,但是配电网一般都具有实时数据不足的问题,因此在具体实施的时候这种方法存在着较大的困难。为此,在本次研究中将无功电流损耗最小的算法提了出来,这种方法可以将补偿点补偿容量、补偿点的个数和位置等确定下来,这样就能够使解空间的维数得以有效减少,随后再通过对改进的遗传算法的利用就能够将无功规划优化的解得出[1]。
2 无功规划优化的数学模型分析
2.1 无功规划优化的目标函数分析 以配电网的实际情况为根据采用罚函数的方式处理状态变量的约束条件,从而将与遗传算法相适合的无功优化目标函数构造出来,其中主要包括无功补偿装置设备年等值费用、系统有功网损年等值费用以及节点电压越限罚函数。
Fmin=KcQci+Ckf+Nc+CeTlPLass+KVΔV
在该公式中,投资单位容量电容器的费用用Kc来表示,节点i无功补偿容量用元/kvar,Qci来表示,电容器无功补偿点集合用 kvar,NQ来表示,电容器在每个节点的固定安装费用用Ckf来表示;无功补偿点的个数用Nc来表示,电能单价用Ce来表示,年最大负荷损耗时间用Tl来表示,最大负荷方式下的有功网损用ΔP来表示,节点电压越限罚因子用KV来表示。
2.2 无功规划优化的数学模型求解 以配电网无功规划优化的特点为根据,本文选择了遗传算法。在进行配电网无功优化的时候遗传算法可以这样描述:利用目标函数在电力系统环境下评价各种条件约束的初始潮流,淘汰掉其中具有较低评价值的,只有具有较高评价值的才可以向下一代遗传自己的特征,这样就能够不断的趋向于优化。所以如何能够以配电网无功优化的问题为根据编码变量,并且将终止判据确定下来、对适应度函数进行设计以及开展遗传操作,这是解决配电网无功规划优化的非常重要的问题[2]。
2.2.1 编码方式。按组对无功补偿进行投切,为了使控制变量的个数和染色体的长度相等,可以使用十进制编码的方式。假设一个电容器节点有6组可投切,那么要对投切的电容器组数进行表示,就可以选择0至6中的任何一个整数。该节点不投切电容器则可以用数字0来表示。
2.2.2 设计适应度函数。可以使用目标函数还表示配电网的无功规划优化。在对配电网的无功优化进行计算时可以使用遗传算法。对目标函数进行转化可以得到适应度函数。最小化问题可以通过目标函数进行求解,因此需要转换目标函数。
2.2.3 遗传算法的选择。在遗传操作中,对遗传算法进行选择是非常重要的。如果没有选择合适的算子,就会使子代和父代具有接近的相似度,从而对种群的多样性造成破坏。这样的后果就是进化停滞,从而出现早熟的现象,对算法的全局寻优能力造成了严重的影响。因此要对各种选择方法进行深入的研究。本文选择的是基于轮盘赌的非线性排序法作为配电网无功运行优化的选择方法。使用基于轮盘赌的非线性排序法,先要对每个个体的适应度函数值进行计算,再从大到小的排列各个个体的适应度值,从而以排列的顺序为依据来对个体进行选择。
2.2.4 变异和交叉算子。使用固定的变异率和交叉率来进行简单的遗传算法是不符合适应性搜索过程和遗传算法动态的。这就需要在简单遗传算法中选择自适应的变异率和交叉率。在保障自适应遗传算法的群多样性的前提下,还要对遗传算法的收敛能力进行保障,从而使遗传算法的优化能力得到提高[3]。
2.2.5 终止判据。在不改变最优个体的适应度以及使用最大进化代数maxgen的基础上,结合最小保留代数来作为终止判据。如果在连续代内,最优值没有找到其他的解法来代替,那么就将其作为求解问题的最优解来结束计算。假设以一定的遗传代数限定为范围,没有解能够满足最优个体的最小保留代数,那么就将次优解输出,结束计算。这是为了尽量控制因素控制准则中存在的缺陷,使进化收敛的速度得到提高。
3 结语
目标函数中以经济技术的综合效益为最大,包括节点电压质量、无功补偿设备投资和配电网电能损耗等等。针对配电网的无功规划优化进行建模。该方法还要对补偿点的位置和个数进行确定,并与改进的遗传算法相结合,来对电容器的容量进行优化。总体而言,该算法具有较高的实用性和有效性,能够使初始种群的无效解减少,并有效地解决了遗传算法中存在的欺骗和早熟等问题。这样一来,配电网的无功规划优化的效率和精度也能够得到进一步的提高,从而有效地对配电网的无功规划进行优化。
参考文献:
[2]李世伟,葛珉昊,金育斌.小水电集中上网对电网的影响分析[J].中国农村水利水电,(08).
[3]李世伟.小水电上网对配电网的影响[J].电气传动自动化,2012(04).
篇4:配电网四种无功补偿方式的比较
配电网四种无功补偿方式的比较
电力系统中的电压与无功功率的状况密切相关,电力系统中的.变化,特别是无功功率的变化,会使电力线路和变压器的电压损耗发生变化,并引起各节点电压的变化,随着电力系统装机容量的日益递增,而网络建设尤其是配电网的建设明显滞后,使10KV及以下配电网的损耗问题日益突出.合理选择无功补偿方案和补偿容量,能有效提高系统的电压稳定性,保证电网的电压质量,提高发、输电设备的利用率,降低有功网损和减少发电费用.
作 者:蒋文静 丁建云 作者单位:宁夏银南供电局,宁夏,银南,751100 刊 名:现代商贸工业 英文刊名:MODERN BUSINESS TRADE INDUSTRY 年,卷(期): 19(11) 分类号:X773 关键词:配电网 无功补偿 方式比较篇5:论配电网的无功优化论文
论配电网的无功优化论文
摘 要:当今,电力已作为现代社会的主要能源,与国民经济建设和人民生活有着极为密切的关系,越来越多的用户对电压质量提出了更高的要求,如何提高电压质量已经成为电力企业的一个重要目标,而其中无功优化又是提高电压质量的重要手段。
关键词:电压质量;配电网;无功补偿;线损;优化
电压质量是衡量电能的主要质量指标之一。电压质量对电网稳定、电力设备安全运行以及工农业生产具有重大影响,无功则是影响电压的一个重要因素。对确定规模的10 kV配电网络终端系统,无功过剩时一方面会提高系统运行电压,导致运行中的用电设备的运行电压超出额定工况,缩短设备的使用寿命;另一方面,无功过剩也会影响线路传输的安全稳定性,导致系统的输送容量下降,给电网运行调度带来不利的影响。而系统无功不足时,一方面会降低电网电压,另一方面,电网中传送的无功功率还增加了电能传输时的网络损耗,加大了电网的运行成本, 电力系统无功潮流分布是否合理,不仅关系到电力系统向电力用户提供电能质量的优劣,而且还直接影响电网自身运行的安全性和经济性。因此,解决好配电网络无功补偿的问题,优化无功,对电网的安全性和降损节能有着重要的意义。
1 无功与线损的关系
因此合理的选择无功补偿点以及补偿容量,能够有效地维持系统的电压水平,提高系统的电压稳定性,避免大量无功的远距离传输,从而降低有功网损,减少发电费用。而且由于我国配电网长期以来无功缺乏,尤其造成的线损相当大,因此无功功率补偿是降损措施中投资少回报高的方案。
2 配电系统无功补偿方案
2.1 变电站集中补偿方式
针对输电网的无功平衡,在变电站进行集中补偿,补偿装置包括并联电容器、电抗器等,主要目的是改善输电网的功率因数、提高终端变电站的电压和补偿主变的无功损耗。这些补偿装置一般连接在变电站的10kV母线上,通常无功补偿装置(一般是并联电容器组)结合有载调压抽头来调节,通过两者的协调来进行电压/无功控制,然而操作上还是较为麻烦的,需要运行人员根据实时电压及有、无功进行分组投切。并且这种方案对配电网的降损起不到什么作用。
VQC装置的投入运行能有效地调节系统的电压和做到无功平衡,并减少运行人员日常调整电压、投切电容器组的`工作量。但是目前一些厂家的电压无功综合控制系统仍存在较多的问题,以至于不少的变电站中虽然安装有VQC装置,但是实际却没有投入运行,或者虽然投入运行,却存在较大的事故隐患。
2.2 杆上补偿方式
目前10千伏配网上很大的无功缺口需要由变电站来填补,大量的无功沿线传输使得配电网网损仍然居高难下。因此可以采用10kV户外并联电容器安装在架空线路的杆塔上(或另行架杆)进行无功补偿,以提高配电网功率因数,达到降损升压的目的。由于杆上安装的并联电容器远离变电站,容易出现保护不易配置、控制成本高、维护工作量大、受安装环境和空间等客观条件限制等工程问题。因此,杆上无功优化补偿必须结合以下实际工程要求来进行:(1)补偿点宜少,一条配电线路上宜采用单点补偿,不宜采用多点补偿, 安装位置的确定线路出口电压较高,无需进行补偿,线路末端电压偏低,电容器运行困难,可以将自动补偿装置安装在距线路电源侧2/3处。如果线路较长,可根据负荷情况选择两处补偿点,一处安装在线路2/5处,另一处在4/5处;(2)控制方式从简。杆上补偿不设分组投切;(3)补偿容量不宜过大。补偿容量太大将会导致配电线路在轻载时的过电压和过补偿现象;另外杆上空间有限,太多的电容器同杆架设,既不安全,也不利于电容器散热;(4)接线宜简单。最好是每相只采用一台电容器装置,以降低整套补偿设备的故障率;(5)保护方式也要简化。主要采用熔断器和氧化锌避雷器分别作为过流和过电压保护。显然,杆上无功补偿主要是针对10kV馈线上沿线的公用变所需无功进行补偿,这种补偿方式具有投资小,回收快,补偿效率较高,便于管理和维护等优点,适合于功率因数较低且负荷较重的长配电线路,但是因负荷经常波动而该补偿方式是长期固定补偿,故其适应能力较差,主要是补偿了无功基本负荷,在线路重载情况下补偿度一般是不能达到0.95。应该开发电容器组能自动投切的杆上自动无功补偿技术, 可以根据配网无功潮流分布情况实时补偿,达到最佳效果。
2.3 用户终端分散补偿方式
《供电系统设计规范》指出,容量较大,负荷平稳且经常使用的用电设备无功负荷宜单独就地补偿。故对于企业和厂矿中的电动机,应该进行就地无功补偿,即随机补偿;针对小区用户终端,由于用户负荷小,波动大,地点分散,无人管理,因此应该开发一种新型低压终端无功补偿装置,并满足以下要求:①智能型控制,免维护;②体积小,易安装;③功能完善,造价较低。
与前面三种补偿方式相比,本补偿方式将更能体现以下优点:①线损率可减少20%;②减小电压损失,改善电压质量,进而改善用电设备启动和运行条件;③释放系统能量,提高线路供电能力。缺点是由于低压无功补偿通常按配电变压器低压侧最大无功需求来确定安装容量,而各配电变压器低压负荷波动的不同时性造成大量电容器在较轻载时的闲置,设备利用率不高。
3 配电网无功优化遇到的问题
(1)优化的问题。目前无功补偿的出发点往往放在用户侧,只注意补偿用户的功率因数。然而要实现有效的降损,必须从电力系统角度出发,通过计算全网的无功潮流,确定配电网的补偿方式、最优补偿容量和补偿地点,才能使有限的资金发挥最大的效益。无功优化配置的目标是在保证配电网电压水平的同时尽可能降低网损。由于它要对补偿后的运行费用以及相应的安装成本同时达到最小化,计算过程相当复杂。
(2)量测的问题。目前10kV配电网的线路上的负荷点一般无表计或部分安装了负荷测录仪,人员的技术水平和管理水平参差不齐,表计记录的准确性和同时性无法保证。这对配电网的潮流计算和无功优化计算带来很大困难。要争取带专变房的用户的支持,使他们能按一定要求进行记录。380V终端用户处通常只装有有功电度表,要实现功率因数的测量是不可能的。这也是低压无功补偿难于广泛开展的原因所在。
(3)谐波的问题。电容器本身具备一定的抗谐波能力,但同时也有放大谐波的副作用。谐波含量过大时会对电容器的寿命产生影响,甚至造成电容器的过早损坏;并且由于电容器对谐波的放大作用,将使系统的谐波干扰更严重。因而做无功补偿时必须考虑谐波治理,在有较大谐波干扰,又需要补偿无功的地点,应考虑增加滤波装置。
(4)无功倒送的问题。无功倒送会增加配电网的损耗,加重配电线路的负担,是电力系统所不允许的。尤其是采用固定电容器补偿方式的用户,则可能在负荷低谷时造成无功倒送,这引起充分考虑。
综上所述,10kV配电网的无功补偿工作应更多地考虑系统的特点,不应因电压等级低、补偿容量小而忽视补偿设备对系统侧的影响(包括网损)。如果需降损的线路能基于一个完善的补偿方案进行改造,则电力系统的收益将比分散的纯用户行为的补偿方式要大得多。
篇6:无功补偿的优化选择论文
近年来,随着农村电网的进一步完善,工农业生产用电规模不断扩大,用电量的日益增长和用电结构的变化,使得电力供需矛盾越来越突出。电力的供不应求迫使人们在降损节能上多做文章,因此,人们根据电力网的运行特点,从无功传输过程消耗有功的角度,推行了无功补偿。
众所周知,电力网在运行时,电源供给的无功功率是电能转换为其他形式能的前提,它为电能的输送、转换创造了条件。没有它,变压器就不能变压与输送电能,没有它,电动机的旋转磁场就建立不起来,电动机就无法转动。但是,长距离输送无功电力,又会造成有功功率的损耗和电压质量的降低,这不仅影响电力网的安全经济运行,而且也影响产品的质量。因此,如何减少无功电力的长距离输送,已成为电力部门和用电企业必不可少的研究课题。为此,我们根据用电设备消耗无功的多少,在负荷较集中、无功消耗较多的地点增设了无功电源点,使无功的需求量就地得到解决,这样不但减少了无功传输过程中造成的能量损耗和电压降落,而且提高了供用电双方和社会的经济效益,可谓一举两得。不过,虽然无功补偿能给企业和社会带来一定的效益,但补偿过程中还需要考虑很多问题,也就是说怎样进行补偿,才能收到最佳的效益呢?这就要求我们在补偿过程中必须遵守一定的原则、方法,做到科学合理的补偿,才能收到事半功倍的`效果。
1 无功补偿的原则
全面规划,合理布局,分级补偿,就地平衡,具体内容如下。
总体平衡与局部平衡相结合,既要满足全网的总无功平衡,又要满足分线、分站的无功平衡。
集中补偿与分散补偿相结合,以分散补偿为主,这就要求在负荷集中的地方进行补偿,既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,目的是做到无功就地平衡,减少其长距离输送。
高压补偿与低压补偿相结合,以低压补偿为主,这和分散补偿相辅相成。
降损与调压相结合,以降损为主,兼顾调压。这是针对线路长,分支多,负荷分散,功率因数低的线路,这种线路最显著的特点是:负荷率低,线路损失大,若对此线路补偿,可明显提高线路的供电能力。
供电部门的无功补偿与用户补偿相结合,因为无功消耗大约60%在配电变压器中,其余的消耗在用户的用电设备中,若两者不能很好地配合,可能造成轻载或空载时过补偿,满负荷时欠补偿,使补偿失去了它的实际意义,得不到理想的效果。
2 根据补偿原则,确定无功补偿容量
按照上述的基本原则,根据无功在电力系统中的去向,确定几种主要的补偿方式及其容量。
变电站高压集中补偿:这种补偿是在变电站10(6)kV母线上集中装设高压并联电容器组,用以补偿主变的空载无功损耗和线路漏补的无功功率。目前,在农网上,除了大宗用户外,县局基本上采用这种补偿。比如:涉县各变电站在未进行人工补偿以前cosφ= 0.85,根据功率因数(0.85)调整电费标准,每月罚款为月总电费的2.5%,经过各站装设了电容器补偿后,平均cosφ=0.9,每月电费减少0.5%,一年下来,功率因数奖电费约为60万元,为企业增加了效益。
随线补偿:将电容器分散安装在高压配电线路上,主要补偿线路上的无功消耗,还可以提高线路末端电压,改善电压质量。其补偿容量一般遵循“三分之二”原则,即补偿容量为无功负荷的三分之二,而电压降为DU = (PR + QX)/Ue。
例1:一条10kV线路,长为5km,导线型号LGJ-70,其中g = 0.46W/km,X0 = 0.411Ω/km,所带负荷200 + j150,在线路末端补偿QC= 100kvar,求线路损耗和电压降。
①求线路上的损耗
补偿前:△P1 = 3×I2R = 3×( + 1502)/102×5×0.46 = 4313W。
补偿后:△P2 = 3×I2R = 3×[2002 +(150 - 100)2]/102×5×0.46 = 2933W。
则一年少损失电量:△A = (△P1 - △P2)T×10-3 = (4313 - 2933)×365×24×10-3 = 12089kWh。
②求电压降
补偿前:△U = (PR + QX)/U = (200×0.46×5 + 150×0.411×5)/10 = 77V。
补偿后:△U = (PR + QX)/U = [200×0.46×5 + (150 - 100)×0.411×5] /10 = 56V。
所以补偿后电压由9.92kV提高到9.94kV,改善了电压质量。
3 随器补偿
将电容器安装在配电变压器低压侧,主要补偿配电变压器的空载无功功率和漏磁无功功率。一般情况下,农网配变负载率较低,轻载或空载时,无功负荷主要是变压器的空载励磁无功,因此配变无功补偿容量不易超过其空载无功,否则,在配变接近空载时可能造成过补偿,所以应按式Qb ≤ I0%Se/100(其中:I0%是空载电流百分数,从手册中可查出,Se是变压器的额定容量),但对于工业用户的变压器补偿,因其负荷率高,补偿时应从提高变压器出力的角度考虑。
例2:涉县良种场有一台变压器Se = 80kVA,cosφ= 0.8,带一抽水用电动机Pe = 75kW,P = Se×cosφ = 80×0.8 = 64kW < 75kW,可见变压器处于超载运行,若提高cosφ的方法提高变压器出力,设拟增cosφ = 0.95,则P = 0.95×80 = 76kW >75kW,由公式Qb = P×tgφ可知,应补偿无功Qb = 25kvar。
4 随电动机补偿
将电容器直接并联在电动机上,用以补偿电动机的无功消耗。据运行统计,县级农网中约有60%的无功功率消耗在电动机上,因此,搞好电动机的无功补偿,使其无功就地平衡,既能减少配电线路的损耗,同时还可以提高电动机的出力。一般对7.5kW以上电动机进行补偿时,确定容量应按QC ≤ 3UeI0。另外,对于排灌所带机械负荷较大的电动机,补偿容量可适当加大,大于电动机的空载无功,但要小于额定无功负荷,即Q0 ≤ QC ≤ Qe。
例3:涉县自来水公司,一条线路长1km,导线型号LGJ-70,其中g = 0.46W/km,X0=0.411Ω/km,带一抽水用电动机Pe = 95kW,实用负荷为100 + j60,由于长期超载,在电动机上补偿无功QC = 30kvar,求补偿前后线路的损耗和电动机的出力。
视在功率S=(1002+602)1/2= 116.26kVA
①求线路上的损耗
补偿前:△P1 = 3×I2R = (1002 + 602)/0.382×1×0.46 = 43.32kW。
补偿后:△P1 = 3×I2R = [1002 + (60 - 30)2]/0.382×1×0.46 = 34.72kW。
△P1 - △P2 = 43.32 - 34.72 = 8.6 kW,则一年少损失电量8.6×24×365 = 75.33MWh。
②求电动机出力
补偿前:PN = 95kW < 100kW,电动机处于超载运行。
补偿后:PN = 112kW >95kW,电动机运行正常,提高了电动机的出力。
5 低压集中补偿
在低压母线上装设自动投切的并联电容器成套装置主要补偿变压器本身及以上输电线路的无功功率损耗,而在配电线路上产生的损耗并未减少,因此,补偿不宜过大,否则变压器轻载或空载运行时,将造成过补偿,补偿容量应以变压器额定容量的30%~40%确定,即:Qb = (0.3 - 0.4)SN,或从提高功率因数的角度考虑Qb = P(tgφ1 - tgφ2),其中tgφ1 、tgφ2是补偿前后功率因数角的正切值。
6 补偿位置的确定
上述介绍了不同目的的补偿方法各不相同,但补偿位置在哪最合理呢?一般我们考虑把并联电容器安置在负荷较集中的地方或无功消耗严重的设备周围。
7 补偿后带来的经济效益
从提高功率因数上,还是以涉县电力局为例,功率因数由0.8提高到0.9左右,月电费罚3.7万元,到奖2.5万元,赢利7.2万元,给企业带来经济效益。
从电压质量上来说,如例1,末端电压由9.92kV提高到9.94kV,保证了产品质量,给用户带来了直接经济效益。
从降损节能上来说,降低了电能损耗,减少了电费的支出,同样给用户带来经济效益。如例3,年节能7.533万kWh,按电价0.5857元/kWh,年节约电费7.533×0.5857=4.4万元。
从提高变压器的处理上来说,由于减少了无功电流,所以提高了变压器的出力。如例2,良种场若不是进行无功补偿,变压器长期处于超载运行,会因长期过热而烧坏变压器,而新安装一台变压器(100kVA),需投资1.3万元,但经过补偿,只需要投资近1000元就解决了变压器超载运行的问题,给良种场增创了1.2万元的经济效益。
总之,无功补偿不仅能改善农网功率因数和电压质量,而且可以使无功负荷就地平衡,提高农网的经济运行水平,同时降低电费支出,减轻工农业生产的负担,所以进行无功补偿是利国利民的好事,我们应下决心去抓,真正让用户得到实惠。
篇7:无功补偿柜
无功功率补偿装Z在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装Z在电力供电系统中处在一个不可缺少的非常重要的位Z。合理的选择补偿装Z,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
一、按投切方式分类:
1. 延时投切方式
延时投切方式即人们熟称的“静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装Z的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装Z的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。
下面就功率因数型举例说明。当这个物理量满足要求时,如cosΦ超前且>0.98,滞后且>0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到cosΦ不满足要求时,如cosΦ滞后且
2. 瞬时投切方式
瞬时投切方式即人们熟称的“动态”补偿方式,应该说它是半导体电力器件与数字技术综合的技术结晶,实际就是一套快速随动系统,控制器一般能在半个周波至1个周波内完成采样、计算,在2个周期到来时,控制器已经发出控制信号了。通过脉冲信号使晶闸管导通,投切电容器组大约20-30毫秒内就完成一个全部动作,这种控制方式是机械动作的接触器类无法实现的。动态补偿方式作为新一代的补偿装Z有着广泛的应用前景。现在很多开关行业厂都试图生产、制
造这类装Z且有的生产厂已经生产出很不错的装Z。当然与国外同类产品相比从性能上、元器件的质量、产品结构上还有一定的差距。
动态补偿的线路方式
(1)LC串接法原理如图1所示
这种方式采用电感与电容的串联接法,调节电抗以达到补偿无功损耗的目的。从原理上分析,这种方式响应速度快,闭环使用时,可做到无差调节,使无功损耗降为零。从元件的选择上来说,根据补偿量选择1组电容器即可,不需要再分成多路。既然有这么多的优点,应该是非常理想的补偿装Z了。但由于要求选用的电感量值大,要在很大的动态范围内调节,所以体积也相对较大,价格也要高一些,再加一些技术的'原因,这项技术到目前来说还没有被广泛采用或使用者很少。
(2)采用电力半导体器件作为电容器组的投切开关,较常采用的接线方式如图2。图中BK为半导体器件,C1为电容器组。这种接线方式采用2组开关,另一相直接接电网省去一组开关,有很多优越性。
作为补偿装Z所采用的半导体器件一般都采用晶闸管,其优点是选材方便,电路成熟又很经济。其不足之处是元件本身不能快速关断,在意外情况下容易烧毁,所以保护措施要完善。当解决了保护问题,作为电容器组投切开关应该是较理想的器件。动态补偿的补偿效果还要看控制器是否有较高的性能及参数。很重要的一项就是要求控制器要有良好的动态响应时间,准确的投切功率,还要有较高的自识别能力,这样才能达到最佳的补偿效果。
当控制器采集到需要补偿的信号发出一个指令(投入一组或多组电容器的指令),此时由触发脉冲去触发晶闸管导通,相应的电容器组也就并人线路运行。需要强调的是晶闸管导通的条件必须满足其所在相的电容器的端电压为零,以避免涌流造成元件的损坏,半导体器件应该是无涌流投切。当控制指令撤消时,触发脉冲随即消失,晶闸管零电流自然关断。关断后的电容器电压为线路电压交流峰值,必须由放电电阻尽快放电,以备电容器再次投入。
元器件可以选单项晶闸管反并联或是双向晶闸管,也可选适合容性负载的固态接触器,这样可以省去过零触发的脉冲电路,从而简化线路,元件的耐压及电流要合理选择,散热器及冷却方式也要考虑周全。
3.混合投切方式
实际上就是静态与动态补偿的混合,一部分电容器组使用接触器投切,而另一部分电容器组使用电力半导体器件。这种方式在一定程度上可做到优势互补,但就其控制技术,目前还见到完善的控制软件,该方式用于通常的网络如工矿、小区、域网改造,比起单一的投切方式拓宽了应用范围,节能效果更好。补偿装Z选择非等容电容器组,这种方式补偿效果更加细致,更为理想。还可采用分相补偿方式,可以解决由于线路三相不平行造成的损失。
4. 在无功功率补偿装Z的应用方面,选择那一种补偿方式,还要依电网的状况而定,首先对所补偿的线路要有所了解,对于负荷较大且变化较快的工况,电焊机、电动机的线路采用动态补偿,节能效果明显。对于负荷相对平稳的线路应采用静态补偿方式,也可使用动态补偿装Z。对于一些特殊的工作环境就要慎重选择补偿方式,尤其线路中含有瞬变高电压、大电流冲击的场合是不能采用动态补偿的。一般电焊工作时间均在几秒钟以上,电动机启动也在几秒钟以上,而动态补偿的响应时间在几十毫秒,按40毫秒考虑则从40毫秒到5秒钟之内是一个相对的稳态过程,动态补偿装Z能完成这个过程。如果线路中没有出现这么一段相对的稳态过程并能量又有较大的变化,我们把它称为瞬变或闪变,采用动态补偿就要出问题并可能引发事故。
二、无功功率第一文库网补偿控制器
无功功率补偿控制器有三种采样方式,功率因数型、无功功率型、无功电流型。选择那一种物理控制方式实际上就是对无功功率补偿控制器的选择。控制器是无功补偿装Z的指挥系统,采样、运算、发出投切信号,参数设定、测量、元件保护等功能均由补偿控制器完成。十几年来经历了由分立元件--集成线路--单片机--DSP芯片一个快速发展的过程,其功能也愈加完善。就国内的总体状况,由于市场的需求量很大,生产厂家也愈来愈多,其性能及内在质量差异很大,很多产品名不符实,在选用时需认真对待。在选用时需要注意的另一个问题就是国内生产的控制器其名称均为“XXX无功功率补偿控制器”,名称里出现的“无功功率”的含义不是这台控制器的采样物理量。采样物理量取决于产品的型号,而不是产品的名称。
1.功率因数型控制器
功率因数用cosΦ表示,它表示有功功率在线路中所占的比例。当cosΦ=1时,线路中没有无功损耗。提高功率因数以减少无功损耗是这类控制器的最终目标。这种控制方式也是很传统的方式,采样、控制也都较容易实现。 * “延时”整定,投切的延时时间,应在10s-120s范围内调节 “灵敏度”整定,电流灵敏度,不大于0-2A 。
* 投入及切除门限整定,其功率因数应能在0.85(滞后)-0.95(超前)范围内整定。
* 过压保护设量
* 显示设Z、循环投切等功能
这种采样方式在运行中既要保证线路系统稳定、无振荡现象出现,又要兼顾补偿效果,这是一对矛盾,只能在现场视具体情况将参数整定在较好的状态下工作。即使调整的较好,也无法祢补这种方式本身的缺陷,尤其是在线路重负荷时。举例说明:设定投入门限;cosΦ=0.95(滞后)此时线路重载荷,即使此
时的无功损耗已很大,再投电容器组也不会出现过补偿,但cosΦ只要不小于0.95,控制器就不会再有补偿指令,也就不会有电容器组投入,所以这种控制方式建议不做为推荐的方式。
2. 无功功率(无功电流)型控制器
无功功率(无功电流)型的控制器较完善的解决了功率因数型的缺陷。一个设计良好的无功型控制器是智能化的,有很强的适应能力,能兼顾线路的稳定性及检测及补偿效果,并能对补偿装Z进行完善的保护及检测,这类控制器一般都具有以下功能:
* 四象限操作、自动、手动切换、自识别各路电容器组的功率、根据负载自动调节切换时间、谐波过压报警及保护、线路谐振报警、过电压保护、线路低电流报警、电压、电流畸变率测量、显示电容器功率、显示cosΦ、U、I、S、P、Q及频率。
由以上功能就可以看出其控制功能的完备,由于是无功型的控制器,也就将补偿装Z的效果发挥得淋漓尽致。如线路在重负荷时,那怕cosΦ已达到0.99(滞后),只要再投一组电容器不发生过补,也还会再投入一组电容器,使补偿效果达到最佳的状态。采用DSP芯片的控制器,运算速度大幅度提高,使得富里叶变换得到实现。当然,不是所有的无功型控制器都有这么完备的功能。国内的产品相对于国外的产品还存在一定的差距。
3. 用于动态补偿的控制器
对于这种控制器要求就更高了,一般是与触发脉冲形成电路一并考虑的,要求控制器抗干扰能力强,运算速度快,更重要的是有很好的完成动态补偿功能。由于这类控制器也都基于无功型,所以它具备静态无功型的特点。
目前,国内用于动态补偿的控制器,与国外同类产品相比有较大的差距,一是在动态响应时间上较慢,动态响应时间重复性不好;二是补偿功率不能一步到位,冲击电流过大,系统特性容易漂移,维护成本高、造成设备整体投资费用高。另外,相应的国家标准也尚未见到,这方面落后于发展。
三、滤波补偿系统
由于现代半导体器件应用愈来愈普遍,功率也更大,但它的负面影响就是产生很大的非正弦电流。使电网的谐波电压升高,畸变率增大,电网供电质量变坏。
如果供电线路上有较大的谐波电压,尤其5次以上,这些谐波将被补偿装Z放大。电容器组与线路串联谐振,使线路上的电压、电流畸变率增大,还有可能造成设备损坏,再这种情况下补偿装Z是不可使用的。最好的解决方法就是在电容器组串接电抗器来组成谐波滤波器。滤波器的设计要使在工频情况下呈容性,以对线路进行无功补偿,对于谐波则为感性负载,以吸收部分谐波电流,改善线路的畸变率。增加电抗器后,要考虑电容端电压升高的问题。
滤波补偿装Z即补偿了无功损耗又改善了线路质量,虽然成本提高较多,但对于谐波成分较大的线路还是应尽量考虑采用,不能认为装Z一时不出问题就认为没有问题存在。很多情况下,采用五次、七次、十一次或高通滤波器可以在补偿无功功率的同时,对系统中的谐波进行消除。
篇8:配电网无功电压优化运行控制方法论文
配电网无功电压优化运行控制方法论文
摘要:配电网优化控制方法在理论上有许多控制方法,但是在实际应用过程中,因为有许多不确定因素,简化了约束条件,并进行综合考虑,从而实现优化运行的目的。本文在配电自动化的基础上进一步阐述配电网优化控制的方法。
关键词:配电网;优化控制;方法
一、配电自动化
配电自动化系统的功能基本有5个方面即配电 SCADA、故障管理、负荷管理、自动绘图规范设理,地理信息系统(AM/FM/CIS)和配电网高级应用。
同输电网的调度自动化系统一样,配电网的SCADA也是配电自动化的基础,只是数据采集的内容不一样,目的也不一样,配电SCADA针对变电站以下的配电网络和用户,目的是为DA/DMS提供基础数据。但是,仅仅是配电 SCADA的三遥功能,并不能称为配电自动化系统,必须在配电SCADA基础上增加馈线自动化(FA)功能。馈线自动化的基本功能应包括馈线故障的自动识别、自动隔离、自动恢复。配网故障诊断是一个复杂的问题,根据配网实际情况和故障情况的差别,诊断的步骤与方法不同。诊断方案应适用于单相接地故障、相一相故障、相一相接地故障和三相故障。使用范围为中性点不接地或小电流接地系统。为了完成DA的功能,配电SCADA除了可以采集正常情况下的馈线状态量,还应对故障期间的馈线状态进行准确的捕捉;除可进行人工远程控制,还应对馈线设备进行自动控制,以便实现故障的自动隔离和自动恢复。
二、配电网优化控制方法
为了降低预想事故集中的扰动带来的损失,减少事故后的操作代价,使系统从不安全状态回到正常状态,所采取的一系列控制措施。如果系统进入紧急状态,此时进行的防止事故扩大的操作称为紧急控制,使系统进入待恢复状态。对处于待恢复状态的系统,需要采取负荷转供和负荷切除等手段,以尽快的给尽可能多的失电负荷恢复电能供应。本文将重点讨论恢复控制中的网络重构、电容器投切以及相关的综合优化方法。
1、配电网网络重构
配电网网络重构是通过选择分段开关、联络断路器的开合状态,来改变网络的拓扑结构,以达到减少网损、平衡负荷、提高电压质量、实现最佳运行方式的目的。网络重构是一个比较复杂的问题,它是网络结构的优化,从数学模型来看,属于非线性组合优化问题。如果系统的网架结构和电气状况允许,对每一个单重故障,将可以找到多个可行的转供方案,方案越多,一则可以粗略的认为该系统的网架结构越坚强。
在树枝没有联络断路器存在的配电网中是不存在重构问题的,所以配电网络重构理论的推导都是基于配电网具有环形结构开环运行的网络。在配电网中存在大量的常闭分段断路器和少量的常开联络断路器,随着负荷的波动或者故障的原因,各条馈线在轻载与重载之间转换,配电网的结构允许其开合交换支路,平衡各条馈线之间的负荷,这不但可以增加各条馈线的稳定裕量,消除过载,提高其安全性,还可以提高总体的电压质量,降低网损,提高系统的经济性。
配电网重构是一个有约束的、非线性、整数组合优化问题,通常以网损最小为目标函数,以电压质量、线路变压器容量等为约束条件,目前配电网网络重构的算法有很多,诸如最短路径法、遗传算法、快算支路交换算法、穷举搜索法等,这些算法都在处理目标函数上,在不同的方面取得了一定的进展,但是考虑到网络重构在实际中仅是配网优化控制的一个方面,是在多目标决策下的一种优化,还需要受到其它优化目标的限制,所以这些网络重构算法在实际应用中还需要做一定的调整。
2、电容器的投切
电容器投切在一般的配电网优化中,主要作用就是改善电能质量和降低网损,电容器的投切对配电网的优化控制有着很重要的意义。长期以来,研究规划阶段电容器优化配置的文献比较多,对运行中电容器优化投切的研究还非常有限。后来许多学者就电容器的投切策略做了大量的研究,还有些学者针对配电网的模型进行了研究,并对相应的算法做了进一步改进。比如在中低压配电网中,三相负荷由于是随机变化的,且一般不平衡,但大多数对电容器优化投切的研究是建立在三相负荷平衡的假设条件上的。三相负荷不平衡会导致供电点三相电压、电流的不平衡,进而增加线路损耗,同时会对接在供电点上的电机运行产生不利影响。因此许多学者开始研究三相模型,其中有人提出了一种配电网中三相不平衡负荷的补偿方法,还有些文献利用三相负荷模型进行电容器优化投切的研究,取得了较好的效果。
就优化方法而言,不少文献和著作都介绍了各种各样的算法,具体可以分为两类:数学模型的解析算法和优化问题的人工智能算法。前者主要有非线性规划、线性规划、整数规划、混合整数规划和动态规划等算法;后者有人工神经元网络算法、遗传算法、模拟退火算法、Box算法和Tabu搜索法等现代启发式算法。解析算法迭代次数少,收敛速度快,但得到的往往是局部最优解。智能算法计算速度较慢,但在全局最优性方面较好。在实际应用中,采用解析类算法的相对多一点。
3、综合优化
如果将考虑安全性的网络重构和电容器投切结合起来,这就是计及安全性的配电网综合优化。配电网络重构是一个有约束的整数规划问题,配电网络电容器投切是个非线性整数规划问题,即使单独考虑其中一个问题就已经十分复杂,若将它们综合起来考虑就会更加复杂,网络结构的优化影响着电容器投切,电容器投切又反过来影响网络结构的优化,二者相互影响。对大规模配电网而言,有一种解决办法就是将综合优化问题分解成网络重构和电容器投切两个优化子问题,对这两个子问题进行交替迭代逐步逼近最优解。即在重构算法的.优化过程中所得到的每一个可行重构方案的基础上,加载电容器投切过程,得到基于该重构方案的一个综合优化解,然后依据目标函数交替迭代,向最优解不断逼近,直到获得最终可行方案。这种配电网预防控制的综合优化方法,由于所针对问题及求解过程的复杂性,使得在线应用具有一定的困难,一般用在离线的运行规划、安全性分析与调度当中。电容器采用基于遗传算法的投切方法进行计算,在现有的补偿设备基础上,以网损最小为目标,在满足电压约束前提下,使整个网络有功损耗最小。而网络重构通过仿真配电网潮流的计算和网损的评估,来对配电网进行重构,确定最优网络结构。若单纯以配电网的网损作为衡量指标,则只做电容器投切的算法效果最好,综合优化的次之,重构的效果相对最差,但是从配电网整体综合优化的角度来看,综合优化的方法则有可取之处,具体选择哪一种算法,需要根据实际配电网的运行情况来加以考量。
三、结束语
配电网优化控制方法在理论上已经有许多控制的方法,但在实际的应用过程中,由于存在着许多不确定因素,如环境因素、政府政策等,最优化的结果很可能是个综合、折衷的结果,而不是单个方面优化后的最佳结果。配电网的运行是多个指标的综合体现,在具体的操作中,可以考虑如何将这些约束条件进行简化处理,并进行综合考虑,从而达到配电网优化运行的目的。
参考文献:
1.李广河;地区电网无功电压集中优化控制系统的研究与实现[D];郑州大学;
2.邱军;电力系统无功电压就地控制研究[D];华中科技大学;
3.邢晓东;金华地区电压无功优化的研究[D];浙江大学;
4.朱毅;基于多Agent的全网电压无功优化控制系统研究[D];山东大学;
篇9:浅谈电力系统的无功优化与无功补偿论文
浅谈电力系统的无功优化与无功补偿论文
1 前言
随着国民经济的迅速发展,用电量的增加,电网的经济运行日益受到重视。降低网损,提高电力系统输电效率和电力系统运行的经济性是电力系统运行部门面临的实际问题,也是电力系统研究的主要方向之一。特别是随着电力市场的实行,输电公司(电网公司)通过有效的手段,降低网损,提高系统运行的经济性,可给输电公司带来更高的效益和利润。电力系统无功功率优化和无功功率补偿是电力系统安全经济运行研究的一个重要组成部分。通过对电力系统无功电源的合理配置和对无功负荷的最佳补偿,不仅可以维持电压水平和提高电力系统运行的稳定性, 而且可以降低有功网损和无功网损,使电力系统能够安全经济运行。
无功优化计算是在系统网络结构和系统负荷给定的情况下,通过调节控制变量(发电机的无功出力和机端电压水平、电容器组的安装及投切和变压器分接头的调节)使系统在满足各种约束条件下网损达到最小。通过无功优化不仅使全网电压在额定值附近运行,而且能取得可观的经济效益,使电能质量、系统运行的安全性和经济性完美的结合在一起,因而无功优化的前景十分广阔。无功补偿可看作是无功优化的一个子部分,即它通过调节电容器的安装位置和电容器的容量,使系统在满足各种约束条件下网损达到最小。
2 无功优化和补偿的原则和类型
2.1 无功优化和补偿的原则
在无功优化和无功补偿中,首先要确定合适的补偿点。无功负荷补偿点一般按以下原则进行确定:
1)根据网络结构的特点,选择几个中枢点以实现对其他节点电压的控制;
2)根据无功就地平衡原则,选择无功负荷较大的节点。
3)无功分层平衡,即避免不同电压等级的无功相互流动,以提高系统运行的经济性。
4)网络中无功补偿度不应低于部颁标准0.7的规定。
2.2 无功优化和补偿的类型
电力系统的无功补偿不仅包括容性无功功率的补偿而且包括感性无功功率的补偿。在超高压输电线路中(500kV及以上),由于线路的容性充电功率很大,据统计在500kV每公里的容性充电功率达1.2Mvar/km。这样就必须对系统进行感性无功功率补偿以抵消线路的容性功率。如实际上,电网在500kV的变电所都进行了感性无功补偿,并联了高压电抗和低压电抗,使无功在500kV电网平衡。
3 输配电网络的无功优化(闭式网)
电力系统的无功补偿从优化方面可从两个方面说起,即输配电网络(闭式网)和配电线路及用户的无功优化和补偿(开式网)。
3.1 无功优化的目标函数
参考文献[3]中著名的等网损微增率定律指出,当全网网损微增率相等时,此时的网损最小。
无功的补偿点应设置在网损微增率较小的点(网损微增率通常为负值时进行无功补偿),这样通过与最优网损微增率相结合进行反复迭代求解得到优化的最佳点。一方面,该方法没有计及其它控制变量的调节作用,同时在实际运行中也不可能通过反复迭代使全网网损微增率相等,这样做的计算量太大且费时。与此同时,国内外学者对无功优化进行了大量研究,提出了大量的无功优化的数学模型的优化算法。无功优化的数学模型主要有两种,其一为不计无功补偿设备的费用,以系统网损最小为主要目的。即优化状态时无功优化的目标函数可用下式表达:
其二,以系统运行最优为目标函数,它计及了系统由于补偿后减小的网损费用和添加补偿设备的费用,可用下式表达:
式中,β为每度电价,max为年最大负荷损耗小时数,α、γ分别表示为无功补偿设备年度折旧维护率和投资回收率,KC为单位无功补偿设备的价格,QC∑为无功补偿总容量。
模型二考虑了投资问题,可认为是一种比较理想的模型。特别是随着电力市场的实行,各部门都追求经济效益,显然考虑了无功投资问题更合理一些。
3.2 优化算法
由于电力系统的非线性、约束的多样性、连续变量和离散变量混合性和计算规模较大使电力系统的无功优化存在着一定的难度。将非线性无功优化模型线性化求解,是一些算法的出发点,如基于灵敏度分析的无功优化潮流、无功综合优化的线性规划内点法、带惩罚项的无功优化潮流和内点法等等,以上均是通过将非线性规划运用泰勒级数展开,忽略二阶及以上的项,建立线性化模型求得优化解。这些方法由于在线性化的过程中,忽略了二阶及以上的项,其计算的收敛性得不到保证。为了提高优化计算的收敛性,又提出了将罚函数的思想引入线性规划,提出了带惩罚项的无功优化潮流模型与算法,使依从变量的越限消除或减小到最低限度。但它不能从根本上结局线性化后的不收敛问题。
针对线性算法方法的不足,又提出了一些运用非线性算法,混合整数规划、约束多面体法和非线性原-对偶算法等等。尽管这些方法能在理论上找到最优解,但由于无功优化本身的特性,使计算复杂、费时,且不能保证可靠收敛。
为了提高收敛性和非线性的对于无功优化中的离散变量(变压器分接头的调节,电容器组的投切)的处理,基于人工智能的新方法,相继提出了遗传算法,Tabu搜索法,启发式算法,改进的遗传算法,分布计算的遗传算法和摸似退火算法等等,这些算法在一定的程度上提高了无功优化的收敛性和计算速度,并且有些方法已经投入实际应用并取得了较好的效果。
但在无功优化仍有以下一些问题需要饩:
1)由于无功优化是非线性问题,而非线性规划常常收敛在局部最优解,如何求出其全局最优解仍需进一步研究和探讨。
2)由于以网损为最小的目标函数,它本身是电压平方的函数,在求解无功优化时,最终求得的解可能有不少母线电压接近于电压的上限,而在实际运行部门又不希望电压接近于上限运行。如果将电压约束范围变小,可能造成无功优化的不收敛或者要经过反复修正、迭代才能求出解(需人为的改变局部约束条件)。如何将电压质量和经济运行指标相统一仍需进一步研究。
3)无功优化的实时性问题。伴随着电力系统自动化水平的提高,对无功优化的实时性提出了很高的要求,如何在很短的时间内避免不收敛,求出最优解仍需进一步研究
4 配电线路
上的.无功补偿及用户的无功补偿
4.1 配电线路上的无功补偿
由于35kV、10kV及一些低压配电线路的电阻相对较大,无功潮流在线路上流动时引起的功率损耗较大且电压损耗较大,故其无功补偿理论建立在其上。经典的线路补偿理论认为电容器安装的位置可见下表。
其原理可简述如下:
当线路输送的无功功率Q,线路长度L,每组补偿距离为x时,每组补偿容量为Qx
Qx=Qx/L
当认为电容器安装在补偿区间中心时,降低的线损最大。无功潮流图可见图1所示:
当第i组电容器安装地点离末端的距离为:
对任一组电容器安装位置离末端的位置为:
xi=L(2i-1)/(2n 1)
? 其最佳补偿容量为:
nQx=2nQ/(2n 1)
这样即可求得表1的数据。
对于配电线路的无功补偿可有效降低网损,但它的效果不如在低压侧补偿。这个结论是假定无功潮流是均匀分布的,如果线路上的无功潮流为非均匀分布的,得出的结论将不同;同时在线路上安装电容器组时,其维护、操作比较不便,且也没有考虑补偿设备的投资问题。因此,建议采用下述方式。
4.2 用户的无功补偿
对于企业及大负荷用电单位,按照无功补偿的种类又分为高压集中补偿、低压集中补偿和低压就地补偿。文献[8]指出在补偿容量相等的情况下,低压就地补偿减低的线损最大,因而经济效益最佳。这是可以理解的。由于低压就地补偿了负荷的感性部分,使流经线路和变压器上的无功电流大大减小,显然此种方法所取得的经济效益最佳。但是上述并没有指出最佳补偿容量应为多少?同时也没有计及无功设备的投资。文献[6]指出了对于开式网的最佳补偿容量,三种常见的开式网可见图2所示。
4.2.1 放射式开式网的最佳无功补偿
对于用户或经配变出线的开式网络,针对开式网的接线的最佳无功补偿容量,参考文献[进行了详细的推导。其目标函数采用第二类目标函数,为了分析,下面进行了简单的推导:
对于网络为放射式网络,此时网络年计算支出费用与无功补偿的关系可表达为:
由于主要研究的是无功功率对有功网损的影响,因此有功功率对网损的影响可不考虑,(4)式可简化为下式:
在其余节点的补偿QCn,op均于上式相同。
4.2.2 干线式和链式开式网的最佳无功补偿
对于干线式及链式接线开式网,在第i=1点设置无功补偿,其QC1,op同放射式开式网,若在i=1,2 设置无功补偿,见图2(b)、(c)所示。
此时年计算支出费用可用下式表达:
同理,可求得QC2,op的表达式为(为了简化起见,节点2电压可认为与节点1电压近似相等):
式中R∑为干线式或链式接线开式网线路电阻之和,此处R∑=R1 R2
推广到网络节点数为i, 干线式或链线式开式网线路段数为m, 综合可得开式网各处无功负荷最佳补偿容量QCi,op的计算通式为:
上述公式简单明了,且将著名的等网损微增率和最优网损微增率结合在一起,通过计算公式一次性能得出最佳补偿容量,避免了计算的迭代过程,具体算例可见参考文献[3]例6-2,在6-2例中,求解最佳补偿容量是通过求解5组方程,6次迭代所得,而利用上述的推导公式可一次性计算出。
5 结语
电力系统的无功优化和无功补偿需要比较精确的负荷数据、发电机数据、变压器参数等等。同时在电力系统的实际运行中,电力系统的状态是连续变化的,因此无功优化和无功补偿应根据实际情况灵活运用。随着调度自动化、配网自动化和无人变电站的进一步实现,需要计算快,收敛性良好的算法,同时伴随着电力市场的实行,无功定价理论的逐渐成熟,无功优化的理论也将相应改变并进一步完善。
★ 配电个人工作总结
★ 节能降耗论文
【10kV配电网的无功优化补偿探讨(共9篇)】相关文章:
配电网谐波的产生与危害治理论文2023-01-22
配电网谐波的治理论文2022-11-07
节能降耗措施2022-10-13
电力调度跟班总结2023-04-03
浅谈供电企业线损分经济论文2023-07-22
电力调度专业工作总结怎么写2023-02-07
电力专业技术年终个人工作总结2022-06-23
电力个人专业技术工作总结2023-02-09
电力专业技术个人工作总结2023-05-21
工厂供电论文2024-05-05