电脑cpu参数的知识介绍(精选14篇)由网友“夕冶”投稿提供,下面小编为大家整理后的电脑cpu参数的知识介绍,希望能帮助大家!
篇1:电脑硬件参数知识cpu篇
看参数识CPU
CPU是Central Processing Unit(中央处理器)的缩写,CPU一般由逻辑运算单元、控制单元和存储单元组成。在逻辑运算和控制单元中包括一些寄存器,这些寄存器用于CPU在处理数据过程中数据的暂时保存。大家需要重点了解的CPU主要指标/参数有:
1.主频
主频,也就是CPU的时钟频率,简单地说也就是CPU的工作频率,例如我们常说的P4(奔四)1.8GHz,这个1.8GHz(1800MHz)就是CPU的主频。一般说来,一个时钟周期完成的指令数是固定的,所以主频越高,CPU的速度也就越快。主频=外频X倍频。
此外,需要说明的是AMD的Athlon XP系列处理器其主频为PR(Performance Rating)值标称,例如Athlon XP 1700+和1800+。举例来说,实际运行频率为1.53GHz的Athlon XP标称为1800+,而且在系统开机的自检画面、Windows系统的系统属性以及WCPUID等检测软件中也都是这样显示的。
2.外频
外频即CPU的外部时钟频率,主板及CPU标准外频主要有66MHz、100MHz、133MHz几种。此外主板可调的外频越多、越高越好,特别是对于超频者比较有用。
3.倍频
倍频则是指CPU外频与主频相差的倍数。例如Athlon XP +的CPU,其外频为133MHz,所以其倍频为12.5倍。
4.接口
接口指CPU和主板连接的接口。主要有两类,一类是卡式接口,称为SLOT,卡式接口的CPU像我们经常用的各种扩展卡,例如显卡、声卡等一样是竖立插到主板上的,当然主板上必须有对应SLOT插槽,这种接口的CPU目前已被淘汰。另一类是主流的针脚式接口,称为Socket,Socket接口的CPU有数百个针脚,因为针脚数目不同而称为Socket370、Socket478、Socket462、Socket423等。
5.缓存
缓存就是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度极快,所以又被称为高速缓存。与处理器相关的缓存一般分为两种——L1缓存,也称内部缓存;和L2缓存,也称外部缓存。例如Pentium4“Willamette”内核产品采用了423的针脚架构,具备400MHz的前端总线,拥有256KB全速二级缓存,8KB一级追踪缓存,SSE2指令集。
内部缓存(L1 Cache)
也就是我们经常说的一级高速缓存。在CPU里面内置了高速缓存可以提高CPU的运行效率,内置的L1高速缓存的容量和结构对CPU的性能影响较大,L1缓存越大,CPU工作时与存取速度较慢的L2缓存和内存间交换数据的次数越少,相对电脑的运算速度可以提高。不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大,L1缓存的容量单位一般为KB。
外部缓存(L2 Cache)
CPU外部的高速缓存,外部缓存成本昂贵,所以Pentium 4 Willamette核心为外部缓存256K,但同样核心的赛扬4代只有128K。
6.多媒体指令集
为了提高计算机在多媒体、3D图形方面的应用能力,许多处理器指令集应运而生,其中最著名的三种便是Intel的MMX、SSE/SSE2和AMD的3D NOW!指令集。理论上这些指令对目前流行的图像处理、浮点运算、3D运算、视频处理、音频处理等诸多多媒体应用起到全面强化的作用。
7.制造工艺
早期的处理器都是使用0.5微米工艺制造出来的,随着CPU频率的增加,原有的工艺已无法满足产品的要求,这样便出现了0.35微米以及0.25微米工艺。制作工艺越精细意味着单位体积内集成的电子元件越多,而现在,采用0.18微米和0.13微米制造的处理器产品是市场上的主流,例如Northwood核心P4采用了0.13微米生产工艺。而在,Intel和AMD的CPU的制造工艺会达到0.09毫米。
8.电压(Vcore)
CPU的工作电压指的也就是CPU正常工作所需的电压,与制作工艺及集成的晶体管数相关。正常工作的电压越低,功耗越低,发热减少。CPU的发展方向,也是在保证性能的基础上,不断降低正常工作所需要的电压。例如老核心Athlon XP的工作电压为1.75v,而新核心的Athlon XP其电压为1.65v。
9.封装形式
所谓CPU封装是CPU生产过程中的最后一道工序,封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。CPU的封装方式取决于CPU安装形式和器件集成设计,从大的分类来看通常采用Socket插座进行安装的CPU使用PGA(栅格阵列)方式封装,而采用Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。现在还有PLGA(Plastic Land Grid Array)、OLGA(Organic Land Grid Array)等封装技术。由于市场竞争日益激烈,目前CPU封装技术的发展方向以节约成本为主.
篇2:电脑CPU知识详解
一、主频。
主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像其他的处理器厂家,有人曾经拿过一快1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。
CPU检测工具:www.0792jiaju.com/soft//1934.html
所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,我们也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟2.66 GHz Xeon/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线的各方面的性能指标。
当然,主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。
二、外频。
外频是CPU的基准频率,单位也是MHz。CPU的外频决定着整块主板的运行速度。说白了,在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。
目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。
三、CPU的位和字长。
位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是 “0”或是“1”在CPU中都是 一“位”。
字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。
四、前端总线(FSB)频率。
前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据带宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。
外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。
其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组 Intel 7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到4.3GB/秒。但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMD Opteron处理器,灵活的HyperTransport I/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMD Opteron处理器就不知道从何谈起了。
五、倍频系数。
倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。一般除了工程样版的Intel的CPU都是锁了倍频的,而AMD之前都没有锁。
六、缓存。
缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。
L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。
L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。
L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显著的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。
其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。
但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。
七、CPU扩展指令集。
CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分,而从具体运用看,如Intel的MMX(Multi Media Extended)、SSE、SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。我们通常会把CPU的扩展指令集称为“CPU的指令集”。SSE3指令集也是目前规模最小的指令集,此前MMX包含有57条命令,SSE包含有50条命令,SSE2包含有144条命令,SSE3包含有13条命令。目前SSE3也是最先进的指令集,英特尔Prescott处理器已经支持SSE3指令集,AMD会在未来双核心处理器当中加入对SSE3指令集的支持,全美达的处理器也将支持这一指令集。
八、CPU内核和I/O工作电压。
从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种,通常CPU的核心电压小于等于I/O电压。其中内核电压的大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在1.6~5V。低电压能解决耗电过大和发热过高的问题。
九、超流水线与超标量。
在解释超流水线与超标量前,先了解流水线(pipeline)。流水线是Intel首次在486芯片中开始使用的。流水线的工作方式就象工业生产上的装配流水线。在CPU中由5—6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5—6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高CPU的运算速度。经典奔腾每条整数流水线都分为四级流水,即指令预取、译码、执行、写回结果,浮点流水又分为八级流水。
超标量是通过内置多条流水线来同时执行多个处理器,其实质是以空间换取时间。而超流水线是通过细化流水、提高主频,使得在一个机器周期内完成一个甚至多个操作,其实质是以时间换取空间。例如Pentium 4的流水线就长达20级。将流水线设计的步(级)越长,其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。但是流水线过长也带来了一定副作用,很可能会出现主频较高的CPU实际运算速度较低的现象,Intel的奔腾4就出现了这种情况,虽然它的主频可以高达1.4G以上,但其运算性能却远远比不上AMD 1.2G的速龙甚至奔腾III。
十、指令集。
(1)CISC指令集
CISC指令集,也称为复杂指令集,英文名是CISC,(Complex Instruction Set Computer的缩写)。在CISC微处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢。其实它是英特尔生产的x86系列(也就是IA-32架构)CPU及其兼容CPU,如AMD、VIA的。即使是现在新起的X86-64(也被成AMD64)都是属于CISC的范畴。
要知道什么是指令集还要从当今的X86架构的CPU说起。X86指令集是Intel为其第一块16位CPU(i8086)专门开发的,IBM1981年推出的世界第一台PC机中的CPU—i8088(i8086简化版)使用的也是X86指令,同时电脑中为提高浮点数据处理能力而增加了X87芯片,以后就将X86指令集和X87指令集统称为X86指令集。
虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到过去的PII至强、PIII至强、Pentium 3,最后到今天的Pentium 4系列、至强(不包括至强Nocona),但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有CPU仍然继续使用X86指令集,所以它的CPU仍属于X86系列。由于Intel X86系列及其兼容CPU(如AMD Athlon MP、)都使用X86指令集,所以就形成了今天庞大的X86系列及兼容CPU阵容。x86CPU目前主要有intel的服务器CPU和AMD的服务器CPU两类。[page]
(2)RISC指令集
RISC是英文“Reduced Instruction Set Computing ” 的缩写,中文意思是“精简指令集”。它是在CISC指令系统基础上发展起来的,有人对CISC机进行测试表明,各种指令的使用频度相当悬殊,最常使用的是一些比较简单的指令,它们仅占指令总数的20%,但在程序中出现的频度却占80%。复杂的指令系统必然增加微处理器的复杂性,使处理器的研制时间长,成本高。并且复杂指令需要复杂的操作,必然会降低计算机的速度。基于上述原因,20世纪80年代RISC型CPU诞生了,相对于CISC型CPU ,RISC型CPU不仅精简了指令系统,还采用了一种叫做“超标量和超流水线结构”,大大增加了并行处理能力。RISC指令集是高性能CPU的发展方向。它与传统的CISC(复杂指令集)相对。相比而言,RISC的指令格式统一,种类比较少,寻址方式也比复杂指令集少。当然处理速度就提高很多了。目前在中高档服务器中普遍采用这一指令系统的CPU,特别是高档服务器全都采用RISC指令系统的CPU。RISC指令系统更加适合高档服务器的操作系统UNIX,现在Linux也属于类似UNIX的操作系统。RISC型CPU与Intel和AMD的CPU在软件和硬件上都不兼容。
目前,在中高档服务器中采用RISC指令的CPU主要有以下几类:PowerPC处理器、SPARC处理器、PA-RISC处理器、MIPS处理器、Alpha处理器。
(3)IA-64
EPIC(Explicitly Parallel Instruction Computers,精确并行指令计算机)是否是RISC和CISC体系的继承者的争论已经有很多,单以EPIC体系来说,它更像Intel的处理器迈向RISC体系的重要步骤。从理论上说,EPIC体系设计的CPU,在相同的主机配置下,处理Windows的应用软件比基于Unix下的应用软件要好得多。
Intel采用EPIC技术的服务器CPU是安腾Itanium(开发代号即Merced)。它是64位处理器,也是IA-64系列中的第一款。微软也已开发了代号为Win64的操作系统,在软件上加以支持。在Intel采用了X86指令集之后,它又转而寻求更先进的64-bit微处理器,Intel这样做的原因是,它们想摆脱容量巨大的x86架构,从而引入精力充沛而又功能强大的指令集,于是采用EPIC指令集的IA-64架构便诞生了。IA-64 在很多方面来说,都比x86有了长足的进步。突破了传统IA32架构的许多限制,在数据的处理能力,系统的稳定性、安全性、可用性、可观理性等方面获得了突破性的提高。
IA-64微处理器最大的缺陷是它们缺乏与x86的兼容,而Intel为了IA-64处理器能够更好地运行两个朝代的软件,它在IA-64处理器上(Itanium、Itanium2 ……)引入了x86-to-IA-64的解码器,这样就能够把x86指令翻译为IA-64指令。这个解码器并不是最有效率的解码器,也不是运行x86代码的最好途径(最好的途径是直接在x86处理器上运行x86代码),因此Itanium 和Itanium2在运行x86应用程序时候的性能非常糟糕。这也成为X86-64产生的根本原因。
(4)X86-64 (AMD64 / EM64T)
AMD公司设计,可以在同一时间内处理64位的整数运算,并兼容于X86-32架构。其中支持64位逻辑定址,同时提供转换为32位定址选项;但数据操作指令默认为32位和8位,提供转换成64位和16位的选项;支持常规用途寄存器,如果是32位运算操作,就要将结果扩展成完整的64位。这样,指令中有“直接执行”和“转换执行”的区别,其指令字段是8位或32位,可以避免字段过长。
x86-64(也叫AMD64)的产生也并非空穴来风,x86处理器的32bit寻址空间限制在4GB内存,而IA-64的处理器又不能兼容x86。AMD充分考虑顾客的需求,加强x86指令集的功能,使这套指令集可同时支持64位的运算模式,因此AMD把它们的结构称之为x86-64。在技术上AMD在x86-64架构中为了进行64位运算,AMD为其引入了新增了R8-R15通用寄存器作为原有X86处理器寄存器的扩充,但在而在32位环境下并不完全使用到这些寄存器。原来的寄存器诸如EAX、EBX也由32位扩张至64位。在SSE单元中新加入了8个新寄存器以提供对SSE2的支持。寄存器数量的增加将带来性能的提升。与此同时,为了同时支持32和64位代码及寄存器,x86-64架构允许处理器工作在以下两种模式:Long Mode(长模式)和Legacy Mode(遗传模式),Long模式又分为两种子模式(64bit模式和Compatibility mode兼容模式)。该标准已经被引进在AMD服务器处理器中的Opteron处理器。
而今年也推出了支持64位的EM64T技术,再还没被正式命为EM64T之前是IA32E,这是英特尔64位扩展技术的名字,用来区别X86指令集。Intel的EM64T支持64位sub-mode,和AMD的X86-64技术类似,采用64位的线性平面寻址,加入8个新的通用寄存器(GPRs),还增加8个寄存器支持SSE指令。与AMD相类似,Intel的64位技术将兼容IA32和IA32E,只有在运行64位操作系统下的时候,才将会采用IA32E。IA32E将由2个sub-mode组成:64位sub-mode和32位sub-mode,同AMD64一样是向下兼容的。Intel的EM64T将完全兼容AMD的X86-64技术。现在Nocona处理器已经加入了一些64位技术,Intel的Pentium 4E处理器也支持64位技术。
应该说,这两者都是兼容x86指令集的64位微处理器架构,但EM64T与AMD64还是有一些不一样的地方,AMD64处理器中的NX位在Intel的处理器中将没有提供。[page]
十一、制造工艺。
制造工艺的微米是指IC内电路与电路之间的距离。制造工艺的趋势是向密集度愈高的方向发展。密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。现在主要的180nm、130nm、90nm。最近官方已经表示有65nm的制造工艺了。
十二.封装形式。
CPU封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。CPU的封装方式取决于CPU安装形式和器件集成设计,从大的分类来看通常采用Socket插座进行安装的CPU使用PGA(栅格阵列)方式封装,而采用Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。现在还有PLGA(Plastic Land Grid Array)、OLGA(Organic Land Grid Array)等封装技术。由于市场竞争日益激烈,目前CPU封装技术的发展方向以节约成本为主。
十三、多线程。
同时多线程Simultaneous multithreading,简称SMT。SMT可通过复制处理器上的结构状态,让同一个处理器上的多个线程同步执行并共享处理器的执行资源,可最大限度地实现宽发射、乱序的超标量处理,提高处理器运算部件的利用率,缓和由于数据相关或Cache未命中带来的访问内存延时。当没有多个线程可用时,SMT处理器几乎和传统的宽发射超标量处理器一样。SMT最具吸引力的是只需小规模改变处理器核心的设计,几乎不用增加额外的成本就可以显著地提升效能。多线程技术则可以为高速的运算核心准备更多的待处理数据,减少运算核心的闲置时间。这对于桌面低端系统来说无疑十分具有吸引力。Intel从3.06GHz Pentium 4开始,所有处理器都将支持SMT技术。
十四、CPU内部的内存控制器。
许多应用程序拥有更为复杂的读取模式(几乎是随机地,特别是当cache hit不可预测的时候),并且没有有效地利用带宽。典型的这类应用程序就是业务处理软件,即使拥有如乱序执行(out of order execution)这样的CPU特性,也会受内存延迟的限制。这样CPU必须得等到运算所需数据被除数装载完成才能执行指令(无论这些数据来自CPU cache还是主内存系统)。当前低段系统的内存延迟大约是120-150ns,而CPU速度则达到了3GHz以上,一次单独的内存请求可能会浪费200-300次CPU循环。即使在缓存命中率(cache hit rate)达到99%的情况下,CPU也可能会花50%的时间来等待内存请求的结束- 比如因为内存延迟的缘故。[page]
十五、SMP。
SMP(Symmetric Multi-Processing),对称多处理结构的简称,是指在一个计算机上汇集了一组处理器(多CPU),各CPU之间共享内存子系统以及总线结构。在这种技术的支持下,一个服务器系统可以同时运行多个处理器,并共享内存和其他的主机资源。像双至强,也就是我们所说的二路,这是在对称处理器系统中最常见的一种(至强MP可以支持到四路,AMD Opteron可以支持1-8路)。也有少数是16路的。但是一般来讲,SMP结构的机器可扩展性较差,很难做到100个以上多处理器,常规的一般是8个到16个,不过这对于多数的用户来说已经够用了。在高性能服务器和工作站级主板架构中最为常见,像UNIX服务器可支持最多256个CPU的系统。
构建一套SMP系统的必要条件是:支持SMP的硬件包括主板和CPU;支持SMP的系统平台,再就是支持SMP的应用软件。
为了能够使得SMP系统发挥高效的性能,操作系统必须支持SMP系统,如WINNT、LINUX、以及UNIX等等32位操作系统。即能够进行多任务和多线程处理。多任务是指操作系统能够在同一时间让不同的CPU完成不同的任务;多线程是指操作系统能够使得不同的CPU并行的完成同一个任务。
要组建SMP系统,对所选的CPU有很高的要求,首先、CPU内部必须内置APIC(Advanced Programmable Interrupt Controllers)单元。Intel 多处理规范的核心就是高级可编程中断控制器(Advanced Programmable Interrupt Controllers--APICs)的使用;再次,相同的产品型号,同样类型的CPU核心,完全相同的运行频率;最后,尽可能保持相同的产品序列编号,因为两个生产批次的CPU作为双处理器运行的时候,有可能会发生一颗CPU负担过高,而另一颗负担很少的情况,无法发挥最大性能,更糟糕的是可能导致死机。
十六、NUMA技术。
NUMA即非一致访问分布共享存储技术,它是由若干通过高速专用网络连接起来的独立节点构成的系统,各个节点可以是单个的CPU或是SMP系统。在NUMA中,Cache 的一致性有多种解决方案,需要操作系统和特殊软件的支持。图2中是Sequent公司NUMA系统的例子。这里有3个SMP模块用高速专用网络联起来,组成一个节点,每个节点可以有12个CPU。像Sequent的系统最多可以达到64个CPU甚至256个CPU。显然,这是在SMP的基础上,再用NUMA的技术加以扩展,是这两种技术的结合。
十七、乱序执行技术。
乱序执行(out-of-orderexecution),是指CPU允许将多条指令不按程序规定的顺序分开发送给各相应电路单元处理的技术。这样将根据个电路单元的状态和各指令能否提前执行的具体情况分析后,将能提前执行的指令立即发送给相应电路单元执行,在这期间不按规定顺序执行指令,然后由重新排列单元将各执行单元结果按指令顺序重新排列。采用乱序执行技术的目的是为了使CPU内部电路满负荷运转并相应提高了CPU的运行程序的速度。分枝技术:(branch)指令进行运算时需要等待结果,一般无条件分枝只需要按指令顺序执行,而条件分枝必须根据处理后的结果,再决定是否按原先顺序进行。
十八、多核心。
多核心,也指单芯片多处理器(Chip multiprocessors,简称CMP)。CMP是由美国斯坦福大学提出的,其思想是将大规模并行处理器中的SMP(对称多处理器)集成到同一芯片内,各个处理器并行执行不同的进程。与CMP比较, SMT处理器结构的灵活性比较突出。但是,当半导体工艺进入0.18微米以后,线延时已经超过了门延迟,要求微处理器的设计通过划分许多规模更小、局部性更好的基本单元结构来进行。相比之下,由于CMP结构已经被划分成多个处理器核来设计,每个核都比较简单,有利于优化设计,因此更有发展前途。目前,IBM 的Power 4芯片和Sun的 MAJC5200芯片都采用了CMP结构。多核处理器可以在处理器内部共享缓存,提高缓存利用率,同时简化多处理器系统设计的复杂度。
下半年,Intel和AMD的新型处理器也将融入CMP结构。新安腾处理器开发代码为Montecito,采用双核心设计,拥有最少18MB片内缓存,采取90nm工艺制造,它的设计绝对称得上是对当今芯片业的挑战。它的每个单独的核心都拥有独立的L1,L2和L3 cache,包含大约10亿支晶体管。
篇3:CPU电脑入门知识
电脑一个精密电器设备,操作中应看清和细心,学习电脑不仅能够掌握知识,还能综合音乐、美术,提高记忆力和想象力。这里给大家分享一些关于CPU电脑入门知识,希望对大家能有所帮助。
Intel 处理器
1Intel 是著名的CPU生产厂商,同时也生产配套的主板芯片组;
2CPU 的速度一般用GHz表示,一般是2.0GHz以上,双核有一个Dual 标记,从“我的电脑-属性”中可以查看;
3除了速度以外,CPU 还看它的缓存 Cache 大小,制作工艺纳米,耗电量功耗等等;
432位和64位的 CPU 是指硬件方面,可以运算的数据宽度,可以安装64位的操作系统和软件;
AMD 处理器
AMD cpu
1AMD 处理器价格便宜速度快,并且首先开发出了64位CPU;
2AMD 处理器的速度用数字表示,比如5000;
3不论使用 Intle 还是 AMD 处理器电脑,可以多关注一下机箱噪音和发热,尤其在夜深人静时;
HLT的历史
HLT暂停指令其实有很长的历史——在第一颗8086处理器上就已经实现了,但早期操作系统并不支持它。老程序员可能会记得,曾经有一段时间,甚至连基本的 HLT 功能都总是不能按预期方式执行。回首过去的超频年代,那时候CPU有一个基本的工具utility叫做 Rain雨,用来实际地增加CPU的idle空闲时间以及提升处理过程中的散热和能耗。随着时间的流逝,我们可以看到硬件制造厂商和软件开发者都变得越来越复杂。
这是Windows 8创新的一个方面——好吧,本质上只是尝试创新——但却产生了一些奇怪的结果。在默认情况下它允许在处理过程中有更长的间隔周期,但这也导致一些程序产生问题,如Google Chrome等程序为了更快地对用户操作进行响应,会自动将时钟频率tick rate设置为操作系统所允许的最小值。这个BUG在新版程序中已经修复了,但仍可能减少某些Windows 8电脑的电池续航时间。
一颗 Intel 8086 CPU, 1978年。确实,当时CPU是很简单的玩意儿—— 大约只有2万个晶体管.
这确实是一个可以调节时钟周期的地方,加上要支持没有基于晶体定时器的系统,使微软措手不及。在Windows8中,软件通过混合操作系统时间记录的方式来调整前端总线速度,就会导致错误的基准测试结果。这种行为在[Windows 10]中一直保持,尽管它只是一个小众的问题——在操作系统产生错误的结果你必须调整系统前端总线的时钟.
原来的那篇博客主要讨论的是桌面操作系统,race-to-idle是现代CPU架构的关键组件。AMD和英特尔每年都会发布新一代产品,还会经常推出更新,可能最高性能只提升那么一点点,但通过更好的时钟门控clock gating却能显著提高能量使用率并更快地进行节能模式切换.
篇4:电脑CPU风扇知识
随着处理器的不断升级,处理器的发热量也逐渐增加,不少最新高端处理器甚至使用了水冷散热新技术,这里给大家分享一些关于电脑CPU风扇知识,希望对大家能有所帮助。
CPU风扇散热原理
处理器在工作时都会产生大量的热量,所以工程师在设计处理器时考虑到散热问题会给每个盒装的处理器里放置一个散热风扇极少的AMD黑盒处理器没有风扇。CPU风冷风扇分两种:下压式风扇和侧吹式风扇,两种风冷风扇都是与处理器表面紧贴在一起的,利用金属的热传递性能将处理器中的热量迅速传递出来,达到降低和稳定处理器温度的作用。
拆卸散热器风扇方法
用户学会安装散热器同时也要会拆卸,Intel原装散热器的拆卸方法有两点需要注意。1.按照按钮所指示的方向,将扣具柱顶端凸起圆点向散热器外逆时针旋转。2.待将旋转后的扣具柱用拇指和食指用力向上抬起,将四个扣具顺次取出即可。
◇IntelLGA 1155、1156、775接口原装风扇安装注意点:
首先散热器安装前的准备工作做好;
将散热器扣具上的旋钮复位;
对角线按压旋钮,将散热器扣好;
卸载处理器时一定要先拔下风扇电源接口,再逆时针旋转旋钮进行风扇拆卸。
产品:速龙II X3 440盒 AMD CPU AMD原装风扇的安装准备
插稳散热风扇的’供电接口
注意:此步骤电源插口应垂直与主板角度垂直插入主板供电接口
◇AMDAM3、AM2+接口原装风扇的安装注意点:
首先散热器安装前的准备工作做好;
将散热器扣具上的拉杆复位;
按压压杆,将散热器扣好,并垂直插好风扇电源接口;
卸载处理器时一定要先拔下风扇电源接口,再向上拉起拉杆进行风扇拆卸。
产品:酷睿i5 2300盒 Intel CPU 第三方CPU散热器安装的准备工作
如今超频玩家都喜欢改装散热器,第三方散热器具有导热性能好,静音效果佳的特点。笔者下面就给大家介绍一款第三方的CPU散热器安装方法,选用的是NZXT的HAVIK 140 双风扇散热器.
第一步:整理散热器主件及附件
DIY散热器及其配件
散热器及其配件,该散热器采用了双风扇,其散热效果不错,风量十足。对于双风扇的安装可以根据自己的需求。
散热器绝缘层
这款散热器绝缘层带有处理器接口型号标识,方便用户安装散热器。该散热器支持3款接口处理器,所以用户在安装散热器的时候要选择正确的接口上螺丝。
螺丝一定要完全宁进背板插孔内,确散热器稳定运行。
产品:酷睿i3 2100盒 Intel CPU 第三方CPU散热器底座的安装
第二步:将散热器主板底座安装好
先将散热底板固定在主板中
底座要与主板的四个插孔对齐,四个螺丝与主板插孔逐个对齐后才可完全插入。
固定好的散热架在主板背部效果
背板安装完毕后,应该是这样的。
第三步:组建板卡正面固定支架
给四个螺丝安装四核相应的螺丝底托,底托需要用户耐心逐个拧紧
将主板翻到正面,正面水平向上给四个螺丝安装四核相应的螺丝底托,底托需要用户耐心逐个拧紧方可。
上辅助扣具
上辅助扣具,稳固扣具的插孔选择需要与底板扣具的一样,需要依据处理器接口的型号而选择。
给辅助扣具的边缘四个固定点安装上固定螺丝
注意,此步骤是给辅助扣具的边缘四个固定点安装上固定螺丝。
产品:酷睿i3 2100盒 Intel CPU 第三方CPU散热器安装
第四步:安装散热器
安装散热器时先要把硅脂涂抹均匀于散热器上,然后轻轻放到CPU扣盖上方。
怎么给cpu风扇注油?
1、拆开主机可取出CPU风扇或者不取出均可。
2、风扇上有logo标签,使用小刀类似的工具揭开。
3、揭开logo标签注入油,轻轻上下拖动风扇轴旋转,使油侵入轴承内部。
注意事项:小心勿扯断线路。
篇5:电脑CPU性能知识
通常一个处理器通常包含多个核心(Core),集成 Cache 子系统,内存子系统通过内部或外部总线与其通信。在经典CPU中一般有两个常用的组件:北桥(North Bridge)和南桥(SouthBridge)。这里给大家分享一些关于电脑CPU性能知识,希望对大家能有所帮助。
CPU性能参数的含义
时钟频率:处理器的时钟频率表示处理器1秒内可以运行多少个基本操作,这些基本操作需要一个时钟周期运行。
指令的延迟:一条指令从开始到执行完成所需的时钟周期数,称之为指令的研制。
指令级并行:单核标量处理器上具有很多不同的部件,每个部件执行不同的指令操作,如有的部件负责从内存中加载数据,有的部件负责计算乘加指令,一些部件负责计算内存地址。如果能够让多条作不同的动作的指令同时操作,那么多个部件就可以同时进行指令操作,这就是指令级并行。
怎么提高cpu性能
1、如果您安装了多个防病毒软件,请保留一个,卸载其他软件,并在必要时卸载所有软件。其他如增加系统内存,使用SSD作为系统磁盘。 还可以提高cpu性能。
2、超频cpu,有些cpu在工厂提供超频潜力,并且可以超频cpu以最大化cpu的性能。超频后可以增强散热措施。 但超频后对cpu寿命有一点影响。
3、无论我们是使用台式机还是笔记本电脑,每隔一段时间清洁一次计算机并添加硅脂,都可以提高计算机的散热能力,从而提高CPU的运行速度。
4、减少系统引导条目的数量和系统加载的不必要服务的数量。系统使用了很长时间,最后清理了系统垃圾。
CPU性能公式
CPU时间
一个程序在CPU上运行的时间,不包括 I/O 时间
时钟周期 系统的时间周期越短,相应的CPU性能就越好
程序的时钟周期数
CPU时间 = 执行程序所需的时钟周期数 X 时钟周期时间
时钟周期时间是时钟频率的倒数
指令周期数 CPI平均每条指令耗费的时钟周期数
CPI = 执行程序所需的时钟周期数 / IC
其中 IC:所执行指令的条数
程序执行的CPU时间可以写成:
CPU时间 = IC x CPI x 时钟周期时间
CPU时间 = IC x CPI / 时钟频率
处理器性能优化策略
影响CPU性能的三方面 分别为 : 时钟频率,CPI 和指令的条数
减少指令的条数 CISC
降低CPI RISC
减少时钟周期 依赖更快的电路技术或者更先进的制造工艺
篇6:电脑CPU构架介绍
CPU架构,从大的层面(接受和处理信号的方式)分两类——CISC、RISC ,CISC就是复杂指令集计算机,目前专指 x86 和 x86-64 两类。这里给大家分享一些关于电脑CPU构架介绍,希望对大家能有所帮助。
概述
CPU架构是CPU商给CPU产品定的一个规范,主要目的是为了区分不同类型的CPU。目前市场上的CPU分类主要分有两大阵营,一个是intel、AMD为首的复杂指令集CPU,另一个是以IBM、ARM为首的精简指令集CPU。不同品牌的CPU,其产品的架构也不相同,Intel、AMD的CPU是X86架构,IBM公司的CPU是PowerPC架构,ARM公司的CPU是ARM架构,国内的飞腾CPU也是ARM架构。此外还有MPIS架构、SPARC架构、Alpha架构。
X86架构
X86架构(The X86 architecture)是微处理器执行的计算机语言指令集。X86指令集是美国Intel公司为其第一块16位CPU(i8086)专门开发的,美国IBM公司1981年推出的世界第一台PC机中的CPU--i8088(i8086简化版)使用的也是X86指令。同时电脑中为提高浮点数据处理能力而增加的X87芯片系列数字协处理器则另外使用X87指令,,包括后来 Intel 80186、80286、80386以及80486,由于以“86”作为结尾,以后就将X86指令集和X87指令集统称为X86指令集。虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到今天的Pentium 4(以下简为P4)系列,但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有CPU仍然继续使用X86指令集,所以它的CPU仍属于X86
x86架构CPU主要应用领域:个人计算机、服务器等。在PC端市场Wintel组合(windows系统 + intel处理器)占据了大部分江山,另外一部分有ADM占领。目前国内有兆芯,从AMD和VIA获取授权,研发自己的X86CPU,有其它国产CPU + 国产操作系统(linux系)可以用于教育和事业单位以及军工行针对的是特殊用户,国产CPU和操作系统想进入民用市场,由于性能、价格以及生态系统等,仍需要继续优化打磨以及一个合适契机。
x86指令集发展
IA:Intel(英特尔)处理器的服务器称之为IA(Intel Architecture)架构服务器
IA-32:英特尔32位体系架构,X86从16位到32位是在原有的架构基础上进行修改(Intel称之为IA-32)
x86-32:现如今Intel把x86-32称为IA-32
x86-64 分为intel和AMD
AMD64:x86架构的64位拓展,向后兼容于16位及32位的x86架构。x64于由AMD设计,AMD首次公开64位集以扩展给x86,称为“AMD64”,AMD64和Intel64基本上一致
Intel64:EM64T(Extended Memory 64 Technology)扩展64bit内存技术,本质上和AMD64一样都是IA-32的增强版本。
IA-64:64位的英特尔架构,英特尔安腾架构(Intel Itanium architecture),使用在Itanium处理器家族上的64位指令集架构,由英特尔公司与惠普公司共同开发。IA是Intel Architecture(英特尔架构)的缩写,64指64位系统。使用这种架构的CPU,包括Itanium和Itanium 2。此架构与x86及x86-64并不相容,操作系统与软件需使用IA-64专用版本。
Intel推出X86架构已满40年了,同486相比,Pentium向前迈进了一大步, 而PⅡ的前进步伐则没有这么大了,X86 CPU的发展似乎已到了尽头。英特尔非常清楚,是X86指令集限制了CPU性能的进一步提高,因此,他们正同惠普共同努力开发下一代指令集架构(Instruction Set Architecture ,ISA): EPIC(Explicitly Parallel Instruction Computing,显性并行指令计算)。对英特尔而言, IA-64(英特尔的64位架构)是下一个10到的架构。新的ISA将使英特尔摆脱X86架构的限制,从而设计出超越所有现有RISC CPU和X86 CPU的新型处理器。
ARM架构
ARM架构,也称作进阶精简指令集机器(Advanced RISC Machine,更早称作:Acorn RISC Machine),是一个32位精简指令集(RISC)处理器架构,其广泛地使用在许多嵌入式系统设计。由于节能的特点,ARM处理器非常适用于行动通讯领域,符合其主要设计目标为低耗电的特性。(其它请参考ARM介绍)
目前,ARM家族占了所有32位嵌入式处理器75%的比例,使它成为占全世界最多数的32位架构之一。ARM处理器可以在很多消费性电子产品上看到,从可携式装置(PDA、移动电话、多媒体播放器、掌上型电子游戏,和计算机)到电脑外设(硬盘、桌上型路由器)甚至在导弹的弹载计算机等军用设施中都有他的存在。在此还有一些基于ARM设计的派生产品,重要产品还包括Marvell的XScale架构和德州仪器的OMAP系列。
篇7:电脑CPU风扇介绍
电脑使用时间久了,CPU散热风扇上积累了很多灰尘,影响CPU的散热,这里给大家分享一些关于电脑CPU风扇介绍,希望对大家能有所帮助。
怎样解决cpu风扇声音大的问题
01、可能是季节原因,因为冬季温度过低,开机的时候可能就会出现风扇声音过大的问题。这个问题会随着开机的推移,变得越来越小。
02、另一种就是积灰,拆开主机清灰即可。具体的拆机步骤视机型而异。小编建议不熟悉主机构造的,请专业人员清灰,害怕弄坏主机得不偿失。
03、还有一种就是风扇老化,这种情况就只有换风扇了。建议更换品牌风扇,毕竟一分钱一分货。
04、当然在散热片和CPU接触板之间垫一层薄薄的硅胶,增加缓冲,也可以减小风扇的声音。
怎么清理cpu风扇?
01风扇使用扣具扣在CPU底座的,它有一个插头插在主板上,把它拔下来。
02、然后用手在一边的扣具上用力向下按再向外松开扣具,再把另一边的扣具退出,这样就把散热器取下来了
03、这个散热器的风扇是用螺丝固定在散热片上的,用螺丝刀把螺丝卸下,就可以取下风扇。把风扇和散热器上的灰尘分别清理干净,再安照原样安装起来。
04、取下散热器时如果看到下边的CPU上的导热硅脂不多了或者干了,就把它全部擦去。
05、蓝色小包就是导热硅脂,把它撕开涂抹在CPU上,只需薄薄一层,涂匀即可,多涂无益。
06、然后再照原样把扣具扣上,风扇电源线插上。再开机温度就会降下来了。
拆卸散热器风扇方法
用户学会安装散热器同时也要会拆卸,Intel原装散热器的拆卸方法有两点需要注意。1.按照按钮所指示的方向,将扣具柱顶端凸起圆点向散热器外逆时针旋转。2.待将旋转后的扣具柱用拇指和食指用力向上抬起,将四个扣具顺次取出即可。
◇IntelLGA 1155、1156、775接口原装风扇安装注意点:
首先散热器安装前的准备工作做好;
将散热器扣具上的旋钮复位;
对角线按压旋钮,将散热器扣好;
卸载处理器时一定要先拔下风扇电源接口,再逆时针旋转旋钮进行风扇拆卸。
产品:速龙II X3 440盒 AMD CPU AMD原装风扇的安装准备
篇8:电脑显卡参数介绍
显卡大家都知道,是电脑硬件的一种,那么关于电脑显卡参数,大家都了解吗?这里给大家分享一些关于电脑显卡参数介绍,希望对大家能有所帮助。
显示核心
显示核心就是我们日常常说的GPU,它在显卡中起到的作用,就像电脑整机中CPU的一样,而GPU主要负责处理视频信息和3D渲染工作。很大程度上,GPU对一张显卡的性能好坏起到决定性的作用。
芯片厂商
我们常见的显示芯片厂商分别有ATI、nVIDIA、Intel、SIS、Matrox和3D Labs。其中Intel和SIS主要生产集成显示芯片,而Matrox和3D Labs则主要面向专业图形领域。目前主流的独立显卡芯片市场主要被两大派系占据,它们分别是ATi和nVIDIA,而由于ATi现在已经被AMD收购,以后显卡市场上的争夺战,将由AMD-ATi和nVIDIA主演。
芯片代号
核心代号就是显示芯片的开发代号。制造商在对显示芯片设计时,为了方便批量生产、销售、管理以及驱动程序的统一,对一个系列的显示芯片给出了相应的代号。相同的核心代号,可以根据不同的市场定位,再对核心的架构或核心频率、搭配的显存颗粒进行控制,不同型号的显示芯片因而产生,从而可以满足不同的性能、价格、市场,起到细分产品线的目的。
芯片型号
以芯片型号细分芯片代号这种做法,还可以将当初生产出来,体格较弱的显卡芯片,通过屏蔽核心管线或降低显卡核心频率等方法,将其处理成完全合格的、较为低端的产品。如nVIDIA的GeForce 7300GT和7600GT为两个型号的显卡,它们同样采用了代号为G73的显示核心,而为了区分两者的级别,7600GT拥有12条渲染管线和5个顶点着色器,而7300GT则被缩减至8条渲染管线和4个顶点着色器。因此,虽然7300GT和7600GT虽然同样采用了代号为G73的显示芯片,但两者仍然是有区别的。
核心架构:
像素渲染管线
在传统显卡的管线架构中,我们经常说道某张显卡拥有X条渲染管线和X个顶点着色单元。而像素渲染管线又称像素渲染流水线,这个称呼能够很生动的说明像素渲染流水线的工作流程。我们对于一条流水线定义是“Pixel Shader像素着色器 TMU纹理单元 ROP光栅化引擎,ATI将其称为Render Back End。
从功能上简单的说,Pixel Shader完成像素处理,TMU负责纹理渲染,而ROP则负责像素的最终输出,因此 ,一条完整的传统流水线意味着在一个时钟周期完成1个Pixel Shader运算,输出1个纹理和1个像素。像素渲染单元、纹理单元和ROP的比例通常为1:1:1,但是也不确定,如在ATi的RV580架构中,其像素渲染流水线就基于1:3的黄金渲染架构,每条像素渲染管线都有着3个像素着色器,因此一块X1900XT显卡中,具有48个像素渲染单元,16个TMU纹理单元和16个ROP。
在过去的显卡核心体系中,像素渲染管线的数量是决定显示芯片性能和档次的最重要的参数之一,在相同的显卡核心频率下,更多的渲染管线也就意味着更大的像素填充率和纹理填充率,因而我们在判断两张不同核心规格的显卡时,并不能单一只看它的核心/显存频率,像素渲染管线亦相当重要。
顶点着色引擎数
我们可以将像素渲染管线理解成为一张3D图形的上色过程,而这个3D图形的构建,则是由顶点着色引擎Vertex Shader来执行的。顶点着色引擎主要负责描绘图形,也就是建立几何模形,每一个顶点将对3D图形的各种数据清楚地定义,其中包括每一顶点的x、y、z坐标,每一点顶点可能包函的数据有颜色、最初的径路、材质、光线特征等。顶点着色引擎数目越多就能更快的处理更多的几何图形,目前许多新的大型3D游戏中,许多独立渲染的草丛和树叶由大量多边形组成,对GPU的Vertex Shader顶点着色器要求很大,在这个情况下,更多顶点着色引擎的优势就被体现出来。
统一渲染架构
这一概念的出现,其初衷就如前面说到,在目前许多新的大型3D游戏中,许多独立渲染的场景由大量多边形组成,对GPU的Vertex Shader顶点着色器要求很大,而这时相对来说,并不需要太多的像素渲染操作,这样便会出现像素渲染单元被闲置,而顶点着色引擎却处于不堪重荷的状态,统一渲染架构的出现,有助于降低Shader单元的闲置状态,大大提高了GPU的利用率。
所谓统一渲染架构,大家可以理解为将Vertex Shader、Pixel Shader以及DirectX 10新引入的Geometry Shader进行统一封装。此时,显卡中的GPU将不会开辟独立的管线,而是所有的运算单元都可以任意处理任何一种Shader运算。这使得GPU的利用率更加高,也避免了传统架构中由于资源分配不合理引起的资源浪费现象。这种运算单元就是现在我们经常提到的统一渲染单元unified Shader,大体上说,unified Shader的数目越多,显卡的3D渲染执行能力就越高,因此,现在unified Shader的数目成为了判断一张显卡性能的重要标准。
核心频率:
显示核心的核心频率在一定程度上反映出核心的运行性能,就像CPU的运行频率一样。我们前边已经说过显卡在核心架构上的差异,而如果在相同核心架构的前提下,核心频率越高的显卡其运行性能就越好,此一说法可以针对于传统渲染流水线体系的GPU。
而nVIDIA在最新的8系列显卡中,提出了核心频率与Shader频率异步的概念。由于DX10采用了统一渲染架构,它将Vertex Shader、Pixel Shader和Geometry Shader进行了统一封装,称为统一渲染单元unified Shader,核心渲染频率就是这些unified Shader的运行频率,通常核心频率和Shader频率的比值为1:2。而在显示核心中,Unified Shader以外的工作单元,如texture单元和负责最终输出的ROP单元还是受到核心频率的影响的。
在nVIDIA的DX10显卡中,除了核心频率现在还多了Shader频率
在DX10显卡中,ATi的Radeon HD 系列和NV的8系列不同,ATi依然沿用了核心频率同步的工作方式,因此Radeon HD 2000系列核心频率的高低,对一张显卡3D性能仍然起到了至关重要的作用。
3D API
API是Application Programming Interface的缩写,是应用程序接口的意思,而3D API则是指显卡与应用程序直接的接口。3D API实际显卡与软件直接的接口,程序员只需要编写符合接口的程序代码,就可以充分发挥显卡的不必再去了解硬件的具体性能和参数,这样就大大简化了程序开发的效率。
目前主要应用的3D API有:DirectX和OpenGL。
RAMDAC频率和支持最大分辨率
RAMDACRandom Access Memory Digital-to-Analog Converter 随机数模转换记忆体。它的作用是将接收到的图像信号转化为相应的模拟信号。
RAMDAC的转换速率以MHz表示,它决定了刷新频率的高低。其工作速度越高,,高分辨率时的画面质量越好。该数值决定了在足够的显存下,显卡最高支持的分辨率和刷新率。如果要在1024×768的分辨率下达到85Hz的刷新率,RAMDAC的速率至少是1024×768×85×1.344折算系数÷106≈90MHz。目前主流的显卡RAMDAC都能达到350MHz和400MHz,已足以满足和超过目前大多数显示器所能提供的分辨率和刷新率。
显存颗粒
如果说显卡的GPU就像电脑的CPU一样,那么显存扮演的,则是电脑中内存的角色,我们现在来讲解显存颗粒的常见参数。
显存封装
显存封装是指显存颗粒采用的封装技术类型,封装的目的就是避免显存芯片与空气中的杂质和具有腐蚀性的气体接触,防止外界对芯片的损害,进而造成显存性能的下降。不同的封装技术在制造工序和工艺方面差异很大,封装后对显存芯片自身性能的发挥也起到至关重要的作用。一般来说,现在常见的封装类型有TSOPThin Small Out-Line Package 薄型小尺寸封装和MicroBGA Micro Ball Grid Array 微型球闸阵列封装、又称FBGAFine-pitch Ball Grid Array。
其中TSOP封装类型的显存,其特征为有这类封装类型的显存颗粒,有两侧的脚针裸露在外,而形状一般呈长方形。TSOP封装现在的制造工艺比较成熟,可靠性也比较高。同时这类封装显存具有成品率高、价格便宜等优势。
TSOP封装类型
对比TSOP封装的显存产品来说,mBGA封装类型的显存在功耗方面有所增加,但其采用的可控塌陷芯片焊接方法使得产品有着更佳的电气性能。同时由于这类显存在厚度和重量上都比TSOP封装有所改善,因此产品的产品的附加参数减少 、信号传输延迟也更小,产品的工作频率及超频性能都有了显著的提高。而mBGA/FBGA封装的特征为看不到针脚,形状亦没有TSOP封装类型那么长。目前,我们见到的显存颗粒都是使用这种mBGA的封装类型。
使用mBGA封装的GDDR3显存颗粒
显存位宽
显存位宽是显存在一个时钟周期内所能传送数据的位数,位数越大则瞬间所能传输的数据量越大。常见的显存位宽有64bit,128bit,256bit,320bit和512bit,从显存位宽上我们也可以判断一张显卡的级别,通常来说,显存位宽越高的显卡级别越高。而一张显卡的显存位宽,一般是由显卡核心的显存位宽控制器决定的,因此就算搭配了8颗16M__32bit的GDDR3显存颗粒的GeForce 8600GTS显卡,其显存位宽也仅是128bit,这是因为GeForce 8600GTS的核心已经规定了显存位宽的规格为128bit。
显存容量
显存容量很好理解了吧?显存容量越大,所能存储的数据就越多。而在这里,需要指出的是,并不是所有的显卡,显存容量越大就越好,现在有许多中低端显卡,如GeForce 8500GT、GeForce 7300GT都配备了512MB的显存容量,其实这对中低端显卡的性能是没有任何影响的。打一个简单的比喻,你拿一个水缸到一个湖里打水,你打到多少的水不取决于这个湖的水量有多大,而是取决于你的水缸有多大。
显存速度
我们常见的显卡参数中,还可以看见如
显存频率
显存频率亦为最常见的显卡参数之一,它一定程度上反应着该显存的速度,以MHz兆赫兹为单位。DDR显存的理论工作频率计算公式是:显存理论工作频率MHz=1000/显存速度__2。
PCB板
PCB是Printed Circuit Block印制电路板的缩写。就是显卡的载体,所有的显卡元件都被焊在PCB板上,因此PCB板的好坏,直接决定了显卡电气性能的好坏和稳定。
PCB层数
PCB的一般可分为信号层Signal,电源层Power或是地线层Ground。每一层PCB版上的电路是相互独立的。目前最为常见的PCB板一般都是采用4层、6层的8层板路设计,总的来说,PCB板层数越多,显卡的电气性越佳,显卡的性能、体质也越好,而价格成本也更为昂贵。由于PCB板的层数我们很难用肉眼来判断,因此一般都要依靠显卡厂商提供的信息,较为可靠的信息来源为带有编号的公版PCB板。如nVIDIA的Model P403/P402/P401则分别为4层、6层、8层PCB板。
显卡接口
目前AGP显卡接口基本已经被淘汰,而直至目前的DX10显卡,还只是AMD-ATi通过桥接芯片,将旗下的DX10显卡推出AGP接口的版本,目前最为主流的是PCI-Express X16接口,而最新的显卡接口为PCI-Epress2.0,支持这个规范的显卡亦已经在酝酿中。
输出接口
现在最为常见的视频输出接口有VGAVideo Graphics Array 视频图形阵列接口,DVI Digital Visual Interface 数字视频接口,S-VIDEOSeparate Video 二分量视频接口,HDMIHigh Definition Multimedia Interface高清晰多媒体接口。
VGA接口的作用是将模拟信号输出到CRT或者LCD显示器中,是目前主流的输出接口之一。
DVI接口的视频信号无需经过转换,信号无衰减或失真,是目前主流的输出接口之一。
S-VIDEO一般采用五线接头,它是用来将亮度和色度分离输出的设备,主要功能是为了克服视频节目复合输出时的亮度跟色度的互相干扰。
HDMI是基于DVIDigital Visual Interface制定的,可以看作是DVI的强化与延伸,两者可以兼容。HDMI可以看作是强化的DVI接口和多声道音频的结合。
显卡供电位
由于目前显卡的频率越来越高,对显卡的电压供电要求也越来越高,因此现在常见的多为核心/显存分开独立供电的设计。而有些高端或运行频率较高的显卡,核心更是采用了两相或多相供电的设计,每相供电分别由电容元件+MOS管+电感组成。而由于PCI-Express X16接口目前所能提供最大的功率为71W左右,因此不少高端显卡还需要外接4Pin或6Pin电源来维持供电,在ATi的顶级显卡Radeon HD 2900XT中,更是提供了6pin 8pin的外接电源接口,功耗非常之大。
散热装置
显卡散热装置的好坏也能影响到一张显卡的运行稳定性,目前高端的显卡大多采用了涡轮式风冷散热系统,配合热管或铜底来进行散热。
常见的散热装置有风冷散热、被动式散热和水冷散热。风冷散热既在散热片上加装了风扇,帮助显卡提高散热效能,目前采用最广泛的就是这种散热方式;被动式散热则是在显卡核心上安装铝合金或铜合金,通过被动的方式来进行散热,这类散热系统由于没有多余的噪音产生,因此大量被应用到高清显卡中;液冷散热则是通过热管液体把GPU和水泵相连,一般在顶级显卡中采用,如我们见到的丽台 8800Ultra液冷版。
顶级显卡用到的液冷散热装置
篇9:电脑主板参数介绍
我们选购主板时候,尤其是第一次买,对上面的很多信息都不懂,其实主板上有一些比较重要的信息和参数值得注意,这里给大家分享一些关于电脑
主板重要参数
主芯片组:Intel Z87
CPU插槽:LGA 1150
CPU类型:Core i7/Core i5/Core i3/Pentium/Celeron
内存类型:DDR3
集成芯片:声卡/网卡
显示芯片:CPU内置显示芯片需要CPU支持
主板板型:ATX板型
USB接口:8×USB2.0接口6内置+2背板;6×USB3.0接口2内置+4背板
SATA接口:6×SATA III接口
PCI插槽:2×PCI插槽
显卡插槽:PCI-E 3.0
标准网卡芯片:板载Realtek RTL8111GR千兆网卡
主板芯片
集成芯片:声卡/网卡
芯片厂商:Intel
主芯片组:Intel Z87
芯片组描述:采用Intel Z87芯片组
显示芯片:CPU内置显示芯片需要CPU支持
音频芯片:集成Realtek ALC892 8声道音效芯片
网卡芯片:板载Realtek RTL8111GR千兆网卡
处理器规格
CPU平台:Intel
CPU类型:Core i7/Core i5/Core i3/Pentium/Celeron
CPU插槽:LGA 1150
CPU描述:支持Intel 22nm处理器
支持CPU数量:1颗
内存规格
内存类型:DDR3
内存插槽:4×DDR3 DIMM
最大内存容量:32GB
内存描述:支持双通道DDR3 3000超频/2933超频/2800超频/2666超频/2600超频/2500超频/2400超频/2200超频/2133超频/1866超频/1800超频/1600/1333MHz内存
扩展插槽
显卡插槽:PCI-E 3.0标准
PCI-E插槽:3×PCI-E X16显卡插槽 2×PCI-E X1插槽
PCI插槽:2×PCI插槽
SATA接口:6×SATA III接口
I/O接口
USB接口:8×USB2.0接口6内置+2背板;6×USB3.0接口2内置+4背板
HDMI接口:1×HDMI接口
外接端口:1×DVI接口、1×VGA接口、1×mini Display Port接口
PS/2接口:PS/2键鼠通用接口
其它接口:1×RJ45网络接口、1×光纤接口、音频接口
板型
主板板型:ATX板型
外形尺寸:30.5×22.35cm
主板参数介绍,希望对大家能有所帮助。
篇10:CPU的型号知识介绍
CPU的型号知识介绍:AMD的CPU型号大全,电脑知识介绍.
-----------------------------------------------------------
[b]AMD Turion 64 X2 TL炫龙64位双核CPU-均支持DDR2内存[/b]
型号 制程 L1 L2 主频 FSB 核心 功耗
TL50 90nm 128KB*2 256KB*2 1.6G 800MHz 2 31W
TL52 90nm 128KB*2 512KB*2 1.6G 800MHz 2 31W
TL56 90nm 128KB*2 512KB*2 1.8G 800MHz 2 33W(31W)
TL60 90nm 128KB*2 512KB*2 2.0G 800MHz 2 35W(31W)
TL64 90nm 128KB*2 512KB*2 2.2G 800MHz 2 35W
TL66 90nm 128KB*2 512KB*2 2.3G 800MHz 2 35W
-----------------------------------------------------------
[b]AMD Turion 64 MK炫龙64位单核CPU-均支持DDR2内存[/b]
型号 制程 L1 L2 主频 FSB 核心 功耗
MK-36 90nm 128KB 512KB 2.0G 800MHz 1 31W
MK-37 90nm 128KB 1MB 2.0G 800MHz 1 31W
MK-38 90nm 128KB 512KB 2.2G 800MHz 1 31W
-----------------------------------------------------------
[b]AMD Turion 64 MT炫龙64位单核CPU-支持DDR内存[/b]
型号 制程 L1 L2 主频 FSB 核心 功耗
MT-28 90nm 128KB 512KB 1.6G 800MHz 1 25W
MT-30 90nm 128KB 1MB 1.6G 800MHz 1 25W
MT-32 90nm 128KB 512KB 1.8G 800MHz 1 25W
MT-34 90nm 128KB 1MB 1.8G 800MHz 1 25W
MT-37 90nm 128KB 1MB 2.0G 800MHz 1 25W
MT-40 90nm 128KB 1MB 2.2G 800MHz 1 25W
-----------------------------------------------------------
[b]AMD Mobile Athlon 64 X2 移动式双核速龙64位CPU-支持DDR-2 800内存[/b]
型号 制程 L1 L2 主频 FSB 核心 功耗
TK-53 65nm 128KB 256KB*2 1.7G 800MHz 2 31W
TK-55 65nm 128KB 256KB*2 1.8G 800MHz 2 31W[/size]
篇11:电脑显卡知识介绍
显卡相信大家都不会陌生,近年来显卡发展的速度也是突飞猛进,各种新技术也相继产生,对于显卡,不少人还是对它不太了解的。这里给大家分享一些关于电脑显卡知识介绍,希望对大家能有所帮助。
什么是电脑显卡
概括的说显卡就是控制电脑图象的输出,大家喜欢与之与视频挂钩,其实视频也是图片的组合,通过一贞显示多幅连续的图片组合成视频,所以专业的说显卡就是图形适配器,大家只要知道显卡和电脑显示的画面有很大的关系即可。
专业的说,显卡又称为视频卡、视频适配器、图形卡、图形适配器和显示适配器等等。它是主机与显示器之间连接的“桥梁”,作用是控制电脑的图形输出,负责将CPU送来的的影象数据处理成显示器认识的格式,再送到显示器形成图象。显卡主要由显示芯片即图形处理芯片GraphicProcessingUnit、显存、数模转换器RAMDAC、VGABIOS、各方面接口等几部分组成。
显卡工作原理
数据data一旦离开CPU,必须通过4个步骤,最后才会到达显示屏:
1从总线bus进入GPU Graphics Processing Unit,图形处理器:将CPU送来的数据送到北桥主桥再送到GPU图形处理器里面进行处理。
2从 video chipset显卡芯片组进入video RAM显存:将芯片处理完的数据送到显存。
3从显存进入Digital Analog Converter = RAM DAC,随机读写存储数—模转换器:从显存读取出数据再送到RAM DAC进行数据转换的工作数字信号转模拟信号。
4从DAC 进入显示器 Monitor:将转换完的模拟信号送到显示屏。
双卡技术
SLI和CrossFire分别是Nvidia和ATI两家的双卡或多卡互连工作组模式。其本质是差不多的。只是叫法不同SLI Scan Line Interlace扫描线交错技术是3dfx公司应用于Voodoo 上的技术,它通过把2块Voodoo卡用SLI线物理连接起来,工作的时候一块Voodoo卡负责渲染屏幕奇数行扫描,另一块负责渲染偶数行扫描,从而达到将两块显卡“连接”在一起获得“双倍”的性能。
CrossFire,中文名交叉火力,简称交火,是ATI的一款多重GPU技术,可让多张显示卡同时在一部电脑上并排使用,增加运算效能,与NVIDIA的SLI技术竞争。CrossFire技术于6月1日,在Computex Taipei 正式发布,比SLI迟一年。从首度公开截至,CrossFire经过了一次修订。
显示芯片
常见的生产显示芯片的厂商:Intel、AMD、nVidia、VIAS3、SIS、Matrox、3D Labs。
Intel、VIAS3、SIS 主要生产集成芯片。
ATI、nVidia 以独立芯片为主,是市场上的主流。
Matrox、3D Labs 则主要面向专业图形市场。
N卡:
GTX高端/性能级显卡GTX590 GTX580 GTX480 GTX295 GTX470 GTX285 GTX280 GTX460 GTX275 GTX260+ GTX260 GTS代表主流产品线GTS450 GTS2509800GTX+ GT代表入门产品线GT120 GT130 GT140 GT200 GT220 GT240。
G低端入门产品G100 G110 G210 G3109300GS 9400GT 。
篇12:电脑主板知识介绍
主板是所有电脑配件的总平台,所以你在选购或使用主板时首先要了解你的主板其核心功能如何,这里给大家分享一些关于电脑主板知识介绍,希望对大家能有所帮助。
工作原理
在电路板下面,是错落有致的电路布线;在上面,则为棱角分明的各个部件:插槽、芯片、电阻、电容等。当主机加电时,电流会在瞬间通过CPU、南北桥芯片、内存插槽、AGP插槽、PCI插槽、IDE接口以及主板边缘的串口、并口、PS/2接口等。随后,主板会根据BIOS______基本输入输出系统______来识别硬件,并进入操作系统发挥出支撑系统平台工作的功能。
芯片分类
775______915主板、945主板、965主板、G31主板、P31主板、G41主板、P41主板______、LGA 1156______H55主板、H57主板、P55主板、P57主板、Q57主板______、LGA 1155______H61主板、H67主板、P67主板______、LGA 1366______X58主板______
AM2 ______770主板、780G主板,785G主板、790GX主板______、AM2+______同AM2______、AM3______870G主板、880G主板、890GX主板、890FX主板______、FM1______A55主板、A75主板______
同一级的CPU往往也还有进一步的划分,如奔腾主板,就有是否支持多能奔腾______P55C,MMX要求主板内建双电压______,是否支持Cyrix 6x86、AMD 5k86 ______都是奔腾级的CPU,要求主板有更好的散热性______等区别。
这些芯片组中集成了对CPU、CACHE、I/0和总线的控制586以上的主板对芯片组的作用尤为重视。Intel公司出品的用于586主板的芯片组有:LX 早期的用于Pentium 60和66MHz CPU的芯片组
·NX 海王星______Neptune______,支持Pentium 75 MHz以上的CPU,在Intel 430 FX芯片组推出之前很流行,现在已不多见。
·FX 在430和440两个系列中均有该芯片组,前者用于Pentium,后者用于Pentium Pro。HX Intel 430系列,用于可靠性要求较高的商用微机。VX Intel 430系列,在HX基础上针对普通的多媒体应用作了优化和精简。有被TX取代的趋势。TX Intel 430系列的最新芯片组,专门针对Pentium MMX技术进行了优化。GX、KX Intel 450系列,用于Pentium Pro,GX为服务器设计,KX用于工作站和高性能桌面PC。MX Intel 430系列,专门用于笔记本电脑的奔腾级芯片组,参见《Intel 430 MX芯片组》。非Intel公司的芯片组有:VT82C5__系列 VIA公司出品的586芯片组。
·SiS系列 SiS公司出品,在非Intel芯片组中名气较大。
·Opti系列 Opti公司出品,采用的主板商较少。
结构分类
·AT 标准尺寸的主板,IBM PC/A机首先使用而得名,有的486、586主板也采用AT结构布局
·Baby AT 袖珍尺寸的主板,比AT主板小,因而得名。很多原装机的一体化主板首先采用此主板结构
·ATX &127; 改进型的AT主板,对主板上元件布局作了优化,有更好的散热性和集成度,需要配合专门的ATX机箱使用
·一体化______All in one______ 主板上集成了声音,显示等多种电路,一般不需再插卡就能工作,具有高集成度和节省空间的优点,但也有维修不便和升级困难的缺点。在原装品牌机中采用较多
·NLX Intel最新的主板结构,最大特点是主板、CPU的升级灵活方便有效,不再需要每推出一种CPU就必须更新主板设计此外还有一些上述主板的变形结构,如华硕主板就大量采用了3/4 Baby AT尺寸的主板结构。
篇13:电脑内存知识介绍
关于内存,不少人都知道它是电脑里面一个重要的部件,但是对于再深入的了解,恐怕就没有了吧。这里给大家分享一些关于电脑内存知识介绍,希望对大家能有所帮助。
你知道最新的RAM技术词汇吗?
介绍一些最新的RAM技术词汇
CDRAM-Cached DRAM——高速缓存存储器
CVRAM-Cached VRAM——高速缓存视频存储器
DRAM-Dynamic RAM——动态存储器
EDRAM-Enhanced DRAM——增强型动态存储器
EDO RAM-Extended Date Out RAM——外扩充数据模式存储器
EDO SRAM-Extended Date Out SRAM——外扩充数据模式静态存储器
EDO VRAM-Extended Date Out VRAM——外扩充数据模式视频存储器
FPM-Fast Page Mode——快速页模式
FRAM-Ferroelectric RAM——铁电体存储器
SDRAM-Synchronous DRAM——同步动态存储器
SRAM-Static RAM——静态存储器
SVRAM-Synchronous VRAM——同步视频存储器
3D RAM-3 DIMESION RAM——3维视频处理器专用存储器
VRAM-Video RAM——视频存储器
WRAM-Windows RAM——视频存储器图形处理能力优于VRAM
MDRAM-MultiBank DRAM——多槽动态存储器
SGRAM-Signal RAM——单口存储器
存储器有哪些主要技术指标
存储器是具有“记忆”功能的设备,它用具有两种稳定状态的物理器件来表示二进制数码 “0”和“1”,这种器件称为记忆元件或记忆单元。记忆元件可以是磁芯,半导体触发器、MOS电路或电容器等。 位bit是二进制数的最基本单位,也是存储器存储信息的最小单位,8位二进制数称为一 个字节Byte,可以由一个字节或若干个字节组成一个字Word在PC机中一般认为1个或 2个字节组成一个字。若干个忆记单元组成一个存储单元,大量的存储单元的集合组成一个 存储体MemoryBank。 为了区分存储体内的存储单元,必须将它们逐一进行编号,称为地址。地址与存储单元之间 一一对应,且是存储单元的唯一标志。应注意存储单元的地址和它里面存放的内容完全是两 回事。
根据存储器在计算机中处于不同的位置,可分为主存储器和辅助存储器。在主机内部,直接 与CPU交换信息的存储器称主存储器或内存储器。在执行期间,程序的数据放在主存储器 内。各个存储单元的内容可通过指令随机读写访问的存储器称为随机存取存储器RAM。另 一种存储器叫只读存储器ROM,里面存放一次性写入的程序或数据,仅能随机读出。RAM 和ROM共同分享主存储器的地址空间。
RAM中存取的数据掉电后就会丢失,而掉电后ROM中 的数据可保持不变。 因为结构、价格原因,主存储器的容量受限。为满足计算的需要而采用了大容量的辅助存储 器或称外存储器,如磁盘、光盘等。 存储器的特性由它的技术参数来描述。
存储容量:存储器可以容纳的二进制信息量称为存储容量。一般主存储器内存容量在几 十K到几十M字节左右;辅助存储器外存在几百K到几千M字节。
存取周期:存储器的两个基本操作为读出与写入,是指将信息在存储单元与存储寄存器 MDR之间进行读写。存储器从接收读出命令到被读出信息稳定在MDR的输出端为止的时间 间隔,称为取数时间TA;两次独立的存取操作之间所需的最短时间称为存储周期TMC。半导 体存储器的存取周期一般为60ns-100ns。
存储器的可靠性:存储器的可靠性用平均故障间隔时间MTBF来衡量。MTBF可以理解为两 次故障之间的平均时间间隔。MTBF越长,表示可靠性越高,即保持正确工作能力越强。
性能价格比:性能主要包括存储器容量、存储周期和可靠性三项内容。性能价格比是一个 综合性指标,对于不同的存储器有不同的要求。对于外存储器,要求容量极大,而对缓冲存 储器则要求速度非常快,容量不一定大。因此性能/价格比是评价整个存储器系统很重要的 指标。
SDARM能成为下一代内存的主流吗
快页模式FPMDRAM的黄金时代已经过去。随着高效内存集成电路的出现和为优化Pentium 芯片运行效能而设计的INTEL HX、VX等核心逻辑芯片组的支持,人们越来越倾向于采用扩 展数据输出EDODRAM。 EDO DRAM采用一种特殊的内存读出电路控制逻辑,在读写一个地址单元时,同时启动下一 个连续地址单元的读写周期。从而节省了重选地址的时间,使存储总线的速率提高到 40MHz。也就是说,与快页内存相比,内存性能提高了将近15%~30%,而其制造成本与快页 内存相近。
但是EDO内存也只能辉煌一时,其称霸市场的时间将极为短暂。不久以后市场上主流CPU的 主频将高达200MHz以上。为优化处理器运行效能,总线时钟频率至少要达到66MHz以上。 多媒体应用程序以及Windows 95和Windows NT操作系统对内存的要求也越来越高,为缓解 瓶颈,只有采用新的内存结构,以支持高速总线时钟频率,而不至于插入指令等待周期。
这样,为适应下一代主流CPU的需要,在理论上速度可与CPU频率同步,与CPU共享一个时钟 周期的同步DRAMSYNCHRONOUS DRAMS即SDRAM注意和用作CACHE的SRAM区别,SRAM的全 写是Static RAM即静态RAM,速度虽快,但成本高,不适合做主存应运而生,与其它内存 结构相比,性能\价格比最高,势必将成为内存发展的主流。
SDRAM基于双存储体结构,内含两个交错的存储阵列,当CPU从一个存储体或阵列访问数据 的同时,另一个已准备好读写数据。通过两个存储阵列的紧密切换,读取效率得到成倍提 高。去年推出的SDRAM最高速度可达100MHz,与中档Pentium同步,存储时间高达5~ 8ns,可将Pentium系统性能提高140%,与Pentium 100、133、166等每一档次只能提高性 能百分之几十的CPU相比,换用SDRAM似乎是更明智的升级策略。
在去年初许多DRAM生产厂家已开始上市4MB×4和2MB×8的16MB SDRAM内存条,但其成本 较高。现在每一个内存生产厂家都在扩建SDRAM生产线。预计到今年底和初,随着 64M SDRAM内存条的大量上市,SDRAM将占据主导地位。其价格也将大幅下降。
但是SDRAM的发展仍有许多困难要加以克服,其中之一便是主板核心逻辑芯片组的限制。VX 芯片组已开始支持168线SDRAM,但一般VX主板只有一条168线内存槽,最多可上32M SDRAM,而简洁高效的HX主板则不支持SDRAM。预计下一代Pentium主板芯片组TX将更好 的支持SDRAM。Intel最新推出的下一代Pentium主板芯片组TX将更好的支持SDRAM。
SDRAM不仅可用作主存,在显示卡专用内存方面也有广泛应用。对显示卡来说,数据带宽越 宽,同时处理的数据就越多,显示的信息就越多,显示质量也就越高。以前用一种可同时进 行读写的双端口视频内存VRAM来提高带宽,但这种内存成本高,应用受很大限制。因此在 一般显示卡上,廉价的DRAM和高效的EDO DRAM应用很广。但随着64位显示卡的上市,带 宽已扩大到EDO DRAM所能达到的带宽的极限,要达到更高的1600×1200的分辨率,而又尽 量降低成本,就只能采用频率达66MHz、高带宽的SDRAM了。
SDRAM也将应用于共享内存结构UMA——一种集成主存和显示内存的结构。这种结构在很 大程度上降低了系统成本,因为许多高性能显示卡价格高昂,就是因为其专用显示内存成本 极高,而UMA技术将利用主存作显示内存,不再需要增加专门显示内存,因而降低了成本。
什么是Flash Memory 存储器
介绍关于闪速存储器有关知识近年来,发展很快的新型半导体存储器是闪速存储器Flash Memory。它的主要特点是在不 加电的情况下能长期保持存储的信息。就其本质而言,Flash Memory属于EEPROM电擦除可 编程只读存储器类型。它既有ROM的特点,又有很高的存取速度,而且易于擦除和重写, 功耗很小。目前其集成度已达4MB,同时价格也有所下降。 由于Flash Memory的独特优点,如在一些较新的主板上采用Flash ROM BIOS,会使得BIOS 升级非常方便。
Flash Memory可用作固态大容量存储器。目前普遍使用的大容量存储器仍为硬盘。硬盘虽 有容量大和价格低的优点,但它是机电设备,有机械磨损,可靠性及耐用性相对较差,抗冲 击、抗振动能力弱,功耗大。因此,一直希望找到取代硬盘的手段。由于Flash Memory集 成度不断提高,价格降低,使其在便携机上取代小容量硬盘已成为可能。
目前研制的Flash Memory都符合PCMCIA标准,可以十分方便地用于各种便携式计算机中以 取代磁盘。当前有两种类型的PCMCIA卡,一种称为Flash存储器卡,此卡中只有Flash Memory芯片组成的存储体,在使用时还需要专门的软件进行管理。另一种称为Flash驱动 卡,此卡中除Flash芯片外还有由微处理器和其它逻辑电路组成的控制电路。它们与IDE标 准兼容,可在DOS下象硬盘一样直接操作。因此也常把它们称为Flash固态盘。 Flash Memory不足之处仍然是容量还不够大,价格还不够便宜。因此主要用于要求可靠性 高,重量轻,但容量不大的便携式系统中。在586微机中已把BIOS系统驻留在Flash存储 器中。
篇14:电脑声卡知识介绍
声卡包括集成声卡和独立声卡,集成声卡和独立声卡的基本功能是一样的。你知道电脑声卡知识有哪些吗?这里给大家分享一些关于电脑声卡知识介绍,希望对大家能有所帮助。
声卡是什么
声卡也叫音频卡,港台称之为声效卡。声卡是电脑的一种设备,它的工作是提供声音的输入输出功能并可以对声音进行处理。声卡由各种电子器件和连接器组成,电子器件用来完成各种特定的功能,连接器用来连接输入输出信号。
声卡的基本功能是把来自话筒、磁带、光盘的原始声音信号加以转换,输出到耳机、扬声器、扩音机、录音机等声响设备,或通过音乐设备数字接口__MIDI__使乐器发出美妙的声音。
有声卡和没声卡的区别
1、功能不同:集成声卡主要侧重于放音、播放音频以及普通的语音聊天和录制。独立声卡则提供了更多的输入输出以及芯片支持特效的处理等功能,专业声卡支持ASIO,可实现专业录音。
2、音效不同:有些集成声卡也具有内置的一些音效,像礼堂、山谷、足球场、下水道等,但那些音效仅仅在监听端输出,无法内放到网络聊天室和系统录音通道。因此这效果,也只能你自己能听到。录音和网络聊天室里的对方是听不到任何效果的。独立声卡,则可以实现效果同步,自己听到的效果,录音能录上,聊天室对方也能同步听到音效。这个区别主要在网络k歌娱乐和个人录音方面。
外置声卡和内置声卡的区别
1、内置声卡:价格低廉,可以使用在任何低阶和高阶的电脑上,只要电脑主板含有PCI插槽就可以。
2、内置声卡价格便宜,故障率低,效果对付普通应用足够,外置声卡是所有使用USB连接电脑的声卡。
3、总的来说分为两种,一种是插上电脑安装驱动就可以使用,是无法根据人声进行修饰。另外一种是安装完驱动必须安装机架才可以使用,是可以使用机架针对人身进行调试。
普通麦克风的独立声卡和集成声卡的区别
普通麦克风使用独立声卡和集成声卡还是有区别的,麦克风越好,这种差别就越大,反之普通麦克风,区别就很小了。
集成声卡相对独立声卡的一大缺点就是容易受到其他部分的信号干扰,集成声卡另一个缺点就是供电通常不纯净,结果带来较明显的底噪问题。也就是杂音。
而另外一个常见的优化就是电磁屏蔽罩设计,集成声卡,因受到整个主板电路设计的影响,电路板上的电子元器件在工作时,容易形成相互干扰以及电噪声的增加,而且电路板也不可能集成更多的多级信号放大元件,以及降噪电路。独立声卡拥有更多的滤波电容以及功放管,经过数次级的信号放大,降噪电路,使得输出音频的信号精度提升,所以在音质输出效果要好。
★ 机械组装实习报告
★ 实习体会心得
★ 奸商语录
【电脑cpu参数的知识介绍(精选14篇)】相关文章:
解读Windows操作系统分区表的秘密2022-09-30
计算机试题2022-10-16
维修主板的参考经验2024-01-29
常见电脑故障问题及维修2023-11-03
电脑蓝屏代码原因及解决方案2024-02-05
笔记本dos分区不能启动硬盘故障2022-09-15
计算机组装毕业论文2023-01-29
电脑蓝屏的七种解决方案2022-09-25
浅析对于贫富差距现象的影响因素2022-08-11
Windows优化大师使用技巧十二则2023-07-16