考研数学大纲线性代数重要知识点总结(集锦15篇)由网友“王大迷”投稿提供,下面是小编整理过的考研数学大纲线性代数重要知识点总结,希望对大家有所帮助。
篇1:考研数学大纲线性代数重要知识点总结
考研数学大纲线性代数重要知识点总结
20考研数学大纲与相比,没有任何变化。近5年的数学大纲保持稳定,相对应的真题的题型与难度也是比较稳定的。因此对于线性代数这门考试科目,建议广大学子抓住重点难点,把基础知识“点”串联成“面”,再配以典型题目构架成完善的知识“体”,这样才能做到在考研这一战场上于线代阵中将分数收入囊中而丝毫不费吹灰之力!
下面某教育机构陈老师结合最新的考研数学大纲,针对线性代数的重要知识点给大家做一下总结:
一、行列式与矩阵
行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。
行列式的核心内容是求行列式――具体行列式的计算和抽象行列式的计算。其中具体行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解;而对于抽象行列式而言,考点不在如何求行列式,而在于结合后面章节内容的比较综合的题。
矩阵部分出题很灵活,频繁出现的知识点包括矩阵各种运算律、矩阵相关的重要公式、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。
二、向量与线性方程组
向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。
这部分的重要考点一是线性方程组所具有的两种形式――矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。
(1)齐次线性方程组与向量线性相关、无关的联系
齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立――印证了向量部分的一条性质“零向量可由任何向量线性表示”。
齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系――齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。
(2)齐次线性方程组的解与秩和极大无关组的联系
同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的`。秩的定义是“极大线性无关组中的向量个数”。经过 “秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。
(3)非齐次线性方程组与线性表示的联系
非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。
三、特征值与特征向量
相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容――既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身”。
本章知识要点如下:
1. 特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。
2. 相似矩阵及其性质,需要区分矩阵的相似、等价与合同:
3. 矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件一是n阶矩阵有n个线性无关的特征值;二是任意r重特征根对应有r个线性无关的特征向量。
4. 实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于以其特征值为对角元素的对角阵。
四、二次型
这部分所讲的内容从根本上讲是特征值和特征向量的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵,必存在正交矩阵 使其可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
本章知识要点如下:
1. 二次型及其矩阵表示。
2. 用正交变换化二次型为标准型。
3. 正负定二次型的判断与证明。
篇2:考研数学线性代数重要知识点分布
考研数学线性代数重要知识点分布
线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。跨考李老师为大家分析考研数学线性代数重要知识点。
一、课程特点
特点一:知识点比较细碎。
如矩阵部分涉及到了各种类型的性质和关系,记忆量大而且容易混淆的地方较多。
特点二:知识点间的联系性很强。
这种联系不仅仅是指在后面几章中用到前两章行列式和矩阵的相关知识,更重要的是在于不同章节中各种性质、定理、判定法则之间有着相互推导和前后印证的关系。
复习线代时,要做到“融会贯通”。
“融会”--设法找到不同知识点之间的内在相通之处;
“贯通”--掌握前后知识点之间的顺承关系。
二、行列式与矩阵
第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算又有低阶和高阶两种类型;主要方法是应用行列式的性质及按行列展开定理化为上下三角行列式求解。对于抽象行列式的`求值,考点不在求行列式,而在于相关性质,矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、运算性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。
三、向量与线性方程组
向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。解线性方程组可以看作是出发点和目标。线性方程组(一般式)
还具有两种形式:(1)矩阵形式,(2)向量形式。
1.齐次线性方程组与线性相关、无关的联系
齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。
齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性此方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系:齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关无关的概念就是为了更好地讨论线性方程组问题而提出的。
2.齐次线性方程组的解与秩和极大无关组的联系
同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过“秩→线性相关无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。
3.非齐次线性方程组与线性表示的联系
非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。
四、特征值与特征向量
相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容--既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。本章知识要点如下:
1.特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。
2.相似矩阵及其性质,需要区分矩阵的相似、等价与合同:
3.矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件1是n阶矩阵有n个线性无关的特征值;充要条件2是任意r重特征根对应有r个线性无关的特征向量。
4.实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于对角阵。
五、二次型
本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵存在正交矩阵使得可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
。篇3:考研数学 线性代数知识点
考研数学 线性代数必备知识点
研究生备考的硝烟还未散尽时,另一场战役已经打响。在考研数学的三门课里,线性代数这门课的特点又是什么呢?线性代数这门课对考生的抽象能力的要求特别的高,大纲要求主要考查的有抽象行列式的计算,抽象矩阵求逆,抽象矩阵求秩,抽象行列式求特征值与特征向量,这四种抽象题型是考研线性代数每年常出题型,占有很大比重,要求同学们有较高的综合能力。
线性代数的前后知识的连续性强完全是由它自身的知识体系和逻辑推理方式来决定的,很多同学也都说线性代数的公式概念结论特别的多,前后联系特别的紧密,在做一个题时,如果有一个公式或者结论不知道,后面的过程就无法做下去,其实这也符合考研大纲的要求的考生运用所学的知识分析问题和解决问题的能力。如果和高等数学做个比较,我们把高等数学看作是一个连续性的推理过程,线性代数就是一个跳跃性的推理过程,在做题时表现的会很明显。同学们在做高等数学的题时,从第一步到第二步到第三步在数学式子上一个一个等下去很清晰,但是同学们在做线性代数的题目时从第一步到第二步到第三步经常在数学式子上看不出来,比如行列式的计算,从第几行(或列)加到哪行(列)很多时候很难一下子看出来。针对上述特点,给出线性代数的各章节重要知识点具体复习建议,希望同学们的复习能够有的放矢。
一、行列式与矩阵
行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。
行列式的核心内容是求行列式――具体行列式的计算和抽象行列式的计算。其中具体行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解;而对于抽象行列式而言,考点不在如何求行列式,而在于结合后面章节内容的相对综合的题。
矩阵部分出题很灵活,频繁出现的知识点包括矩阵各种运算律、矩阵的基本性质、矩阵可逆的判定及求逆、矩阵的秩、初等矩阵等。
二、向量与线性方程组
向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的`内容则相对独立,可以看作是对核心内容的扩展。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。
这部分的重要考点一是线性方程组所具有的两种形式――矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。
(1)齐次线性方程组与向量线性相关、无关的联系
齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立――印证了向量部分的一条性质“零向量可由任何向量线性表示”。
齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系――齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。
(2)齐次线性方程组的解与秩和极大无关组的联系
同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过 “秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。
(3)非齐次线性方程组与线性表出的联系
非齐次线性方程组是否有解对应于向量是否可由列向量
三、特征值与特征向量
相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容――既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身”。
本章知识要点如下:
1. 特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。
2. 相似矩阵及其性质,需要区分矩阵的相似、等价与合同:
3. 矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件一是n阶矩阵有n个线性无关的特征值;二是任意r重特征根对应有r个线性无关的特征向量。
4. 实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于以其特征值为对角元素的对角阵。
四、二次型
这部分所讲的内容从根本上讲是特征值和特征向量的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵,必存在正交矩阵,使其可以相似对角化”,其过程就是上一章实对称矩阵相似对角化的应用。
本章核心要点如下:
1. 用正交变换化二次型为标准型。
2. 正定二次型的判断与证明。
篇4:考研数学线性代数题型总结
考研数学线性代数题型总结
》考研复习的强化阶段已经结束,在这段时间,大家应该把所学的知识系统化综合化。数学题目千变万化,有各种延伸和变形,考生如果想在考研数学中取得好成绩,就一定要认真仔细的复习,重视三基(基本概念、基本方法、基本性质),多思考多总结,做到融会贯通。教材把线性代数的内容分为了六章:行列式、矩阵、线性方程组、向量、特征值和特征向量、二次型。考生在做题过程中,应该能发现,线性代数部分考察的知识点和题型都相对固定,以下我们针对考研数学,对线性代数部分的常考题型进行总结:一、行列式常考的题型有:1.数值型行列式的计算,2.抽象型行列式的计算。
二、矩阵常考的`题型有:1.对矩阵的运算的考查,2.对逆矩阵的考查,3.初等变换,4.矩阵方程,5.矩阵的秩,6.矩阵的分块。
三、线性方程组与向量常考的题型有:1.向量组的线性表出,2.向量组的线性相关性,3.向量组的秩与极大线性无关组,4.向量空间的基与过渡矩阵,5.线性方程组解的判定,6.齐次线性方程组的基础解系,7.线性方程组的求解,8.同解与公共解。
四、特征值与特征向量常考的题型有:1.特征值与特征向量的定义与性质,2.矩阵的相似对角化,3.实对称矩阵的相关问题,4.综合应用。
五、二次型常考的题型有:1.二次型及其矩阵,2.化二次型为标准型,3.二次型的惯性系数与合同规范型,4.正定二次型。
kaoyan/篇5:考研数学线性代数难点知识点分析
考研数学线性代数难点知识点分析
在考研数学中,线性代数部分所占分值为22%,虽然所占比例不及高数分值高,但同样重要。线性代数部分内容相对容易,考试的时候出题的套路比较固定。但线代的考题对考生对基本概念的理解要求很高,很多考生往往是读完了题却不知道题目的实际含义是什么。这就要求同学们在复习时多注意一下基本概念。
依据2013考研数学新大纲以及历年真题来看,线性代数的重难点如下:
一、行列式
行列式的性质、行列式按行(列)展开定理是重点,但不是难点。在行列式的计算题目中,尤其是抽象行列式的计算,常用到矩阵的相关知识,应提高对知识的综合运用能力。
二、矩阵
逆矩阵、矩阵的初等变换、矩阵的秩是重点。逆矩阵的.计算,以及矩阵是否可逆的判定属于常考内容。矩阵的初等变换常以选择题形式出现。
三、向量
向量组的线性相关与线性无关是一个重点,要求掌握向量组线性相关、线性无关的性质及判别法,常以选择题、解答题形式出现。正交矩阵也可以作为一个重点掌握。考查最多的是施密特正交化法。
四、线性方程组
方程组解的讨论、待定参数的解的讨论问题是重点考查内容。掌握用初等行变换求解线性方程组的方法。
五、矩阵的特征值和特征向量
矩阵的特征值、特征向量的计算以及矩阵的对角化是重点。对于抽象矩阵,要会用定义求解;对于具体矩阵,一般通过特征方程 求特征值,再利用 求特征向量。相似对角化要掌握对角化的条件,注意一般矩阵与实对称矩阵在对角化方面的联系与区别。
六、二次型
这部分需要掌握两点:一是用正交变换和配方法化二次型为标准形,重点是正交变换法。需要注意的是对于有多重特征值时,解方程组所得的对应的特征向量可能不一定正交,这时要正交规范化。二是二次型的正定性,掌握判定正定性的方法。
篇6:线性代数知识点总结
线性代数知识点总结
第一章行列式
知识点1:行列式、逆序数
知识点2:余子式、代数余子式
知识点3:行列式的性质
知识点4:行列式按一行(列)展开公式
知识点5:计算行列式的方法
知识点6:克拉默法则
第二章矩阵
知识点7:矩阵的概念、线性运算及运算律
知识点8:矩阵的乘法运算及运算律
知识点9:计算方阵的幂
知识点10:转置矩阵及运算律
知识点11:伴随矩阵及其性质
知识点12:逆矩阵及运算律
知识点13:矩阵可逆的判断
知识点14:方阵的行列式运算及特殊类型的矩阵的运算
知识点15:矩阵方程的求解
知识点16:初等变换的概念及其应用
知识点17:初等方阵的概念
知识点18:初等变换与初等方阵的关系
知识点19:等价矩阵的概念与判断
知识点20:矩阵的子式与最高阶非零子式
知识点21:矩阵的秩的概念与判断
知识点22:矩阵的秩的性质与定理
知识点23:分块矩阵的概念与运算、特殊分块阵的运算
知识点24:矩阵分块在解题中的技巧举例
第三章向量
知识点25:向量的'概念及运算
知识点26:向量的线性组合与线性表示
知识点27:向量组之间的线性表示及等价
知识点28:向量组线性相关与线性无关的概念
知识点29:线性表示与线性相关性的关系
知识点30:线性相关性的判别法
知识点31:向量组的最大线性无关组和向量组的秩的概念
知识点32:矩阵的秩与向量组的秩的关系
知识点33:求向量组的最大无关组
知识点34:有关向量组的定理的综合运用
知识点35:内积的概念及性质
知识点36:正交向量组、正交阵及其性质
知识点37:向量组的正交规范化、施密特正交化方法
知识点38:向量空间(数一)
知识点39:基变换与过渡矩阵(数一)
知识点40:基变换下的坐标变换(数一)
第四章 线性方程组
知识点41:齐次线性方程组解的性质与结构
知识点42:非齐次方程组解的性质及结构
知识点43:非齐次线性线性方程组解的各种情形
知识点44:用初等行变换求解线性方程组
知识点45:线性方程组的公共解、同解
知识点46:方程组、矩阵方程与矩阵的乘法运算的关系
知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例
第五章矩阵的特征值与特征向量
知识点48:特征值与特征向量的概念与性质
知识点49:特征值和特征向量的求解
知识点50:相似矩阵的概念及性质
知识点51:矩阵的相似对角化
知识点52:实对称矩阵的相似对角化.
知识点53:利用相似对角化求矩阵和矩阵的幂
第六章二次型
知识点54:二次型及其矩阵表示
知识点55:矩阵的合同
知识点56 : 矩阵的等价、相似与合同的关系
知识点57:二次型的标准形
知识点58:用正交变换化二次型为标准形
知识点59:用配方法化二次型为标准形
知识点60:正定二次型的概念及判断
篇7:线性代数知识点总结
线性代数知识点总结
线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,太奇考研专家们提醒广大的的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对考研的同学们学习有帮助。
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《20xx年全国硕士研究生入学统一考试数学120种常考题型精解》。
矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。
向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。
特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础.重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法.重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。
一、行列式与矩阵
行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。
行列式的核心内容是求行列式——具体行列式的计算和抽象行列式的计算。其中具体行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解;而对于抽象行列式而言,考点不在如何求行列式,而在于结合后面章节内容的相对综合的题。
矩阵部分出题很灵活,频繁出现的知识点包括矩阵各种运算律、矩阵的基本性质、矩阵可逆的判定及求逆、矩阵的秩、初等矩阵等。
二、向量与线性方程组
向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。
这部分的重要考点一是线性方程组所具有的两种形式——矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。
(1)齐次线性方程组与向量线性相关、无关的联系
齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立——印证了向量部分的一条性质“零向量可由任何向量线性表示”。
齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系——齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。
(2)齐次线性方程组的解与秩和极大无关组的联系
同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过 “秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。
(3)非齐次线性方程组与线性表出的联系
非齐次线性方程组是否有解对应于向量是否可由列向量
三、特征值与特征向量
相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身”。
本章知识要点如下:
1. 特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。
2. 相似矩阵及其性质,需要区分矩阵的相似、等价与合同:
3. 矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件一是n阶矩阵有n个线性无关的特征值;二是任意r重特征根对应有r个线性无关的特征向量。
4. 实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于以其特征值为对角元素的对角阵。
四、二次型
这部分所讲的内容从根本上讲是特征值和特征向量的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵,必存在正交矩阵,使其可以相似对角化”,其过程就是上一章实对称矩阵相似对角化的应用。
本章核心要点如下:
1. 用正交变换化二次型为标准型。
2. 正定二次型的判断与证明。
篇8:考研数学 线性代数高频考点
考研数学 线性代数高频考点
一、行列式
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。所以要熟练掌握行列式常用的计算方法。
1重点内容:行列式计算
(1)降阶法
这是计算行列式的主要方法,即用展开定理将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。
(2)特殊的行列式
有三角行列式、范德蒙行列式、行和或列和相等的行列式、三线型行列式、爪型行列式等等,必须熟练掌握相应的计算方法。
2常见题型
(1)数字型行列式的计算
(2)抽象行列式的计算
(3)含参数的行列式的计算。
二、矩阵
矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。有些性质得证明必须能自己推导。这几年还经常出现有关初等变换与初等矩阵的命题。
1重点内容:
(1)矩阵的`运算
(2)伴随矩阵
(3)可逆矩阵
(4)初等变换和初等矩阵
(5)矩阵的秩
2常见题型:
(1)计算方阵的幂
(2)与伴随矩阵相关联的命题
(3)有关初等变换的命题
(4)有关逆矩阵的计算与证明
矩阵可逆有哪几种等价关系?如何判别?都必须熟练掌握。
(5)解矩阵方程。
三、向量
向量部分既是重点又是难点,由于n维向量的抽象性及在逻辑推理上的较高要求,导致考生在学习理解上的困难。考生至少要梳理清楚知识点之间的关系,最好能独立证明相关结论。
1重点内容:
(1)向量的线性表示
线性表示经常和方程组结合考察,特点,表面问一个向量可否由一组向量线性表示,其实本质需要转换成方程组的内容来解决,经常结合出大题。
(2)向量组的线性相关性
向量组的线性相关性是线性代数的重点,也是考研的重点。同学们一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。
(3) 向量组等价
要注意向量组等价与矩阵等价的区别。
(4)向量组的极大线性无关组和向量组的秩
(5)向量空间
2常见题型:
(1)判定向量组的线性相关性
(2)向量组线性相关性的证明
(3)判定一个向量能否由一向量组线性表出
(4)向量组的秩和极大无关组的求法
(5)有关秩的证明
(6)有关矩阵与向量组等价的命题
(7)与向量空间有关的命题。
四、线性方程组
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。但也不会简单到仅考方程组的计算,还需灵活运用,比如20的线性代数第一道解答题,粗看不是解方程组,如果你光会熟练计算方程组而不知如何把问题归结为解线性方程组,那么你会有英雄无用武之地的感叹,就像一个人苦练屠龙本领,结果却发现无龙可屠。
1重点内容
(1)齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构
(2)齐次线性方程组基础解系的求解与证明
(3)齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。
2常见题型
(1)线性方程组的求解
(2)方程组解向量的判别及解的性质
(3)齐次线性方程组的基础解系
(4)非齐次线性方程组的通解结构
(5)两个方程组的公共解、同解问题。
五、特征值与特征向量
特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大。
1重点内容
(1)特征值和特征向量的概念及计算
(2)方阵的相似对角化
(3)实对称矩阵的正交相似对角化。
2常见题型
(1)数值矩阵的特征值和特征向量的求法
(2)抽象矩阵特征值和特征向量的求法
(3)判定矩阵的相似对角化
(4)由特征值或特征向量反求A
(5)有关实对称矩阵的问题。
六、二次型
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。
1重点内容:
(1)掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;
(2)了解二次型的规范形和惯性定理;
(3)掌握用正交变换并会用配方法化二次型为标准形;
(4)理解正定二次型和正定矩阵的概念及其判别方法。
2常见题型
(1)二次型表成矩阵形式
(2)化二次型为标准形
(3)二次型正定性的判别。
考研教育网最后提醒大家,做题的时候一定要总结,复习到现在这个阶段了,一定要注意从各个方面来总结。比如说像线性方程组这一章,你应该总结一下,像这一块真题应该怎么考,都有什么花样,有哪些思想和技巧在里边,把这些东西归纳好了,在以后做题的时候应该怎么做就会很清楚了,考试的时候碰到这种题也就手到擒来,轻松搞定!
篇9:考研数学:线性代数怎么复习
考研数学:线性代数怎么复习
数学考试大纲和去年相比,线性代数基本没有变化。这是数学学科本身的严谨性和稳定性的体现,对于考研的同学们来说也是一个好消息。线性代数每年考查的题型题量很固定,考查内容也很稳定,以考察计算题为主,相对来说,是同学们复习比较好拿分的科目。下面就线性代数的考查特点给大家做一个分析。
线性代数一共六章的内容。其中第一章行列式,它在整张试卷中所占比例不是很大,一般以填空题和选择题为主,但它是必考内容,即便没有单独考查的题目,也会在其它的试题中给以考查,如求特征值就是计算相应的行列式。行列式的重点内容是掌握计算行列式的方法,同学们要掌握降阶法求行列式,以及其它的像爪型、三对角、范德蒙、行和或列和相等的'行列式的求法。矩阵是后面各章节的基础。矩阵的概念、运算及理论贯穿线性代数的始末。这部分考点较多,像逆矩阵、伴随矩阵、转置矩阵、矩阵的幂、矩阵的行列式等概念的定义、性质、运算等等是每年考研的重点内容,同学们在复习的时候一定要注意归纳总结才可能掌握好。向量组的线性相关性是线性代数的重点也是考研的难点,大家复习的时候一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定方法并能灵活应用,还要弄清楚线性表出、向量组的秩及线性方程组等之间的联系,从各个侧面加强对线性相关性的理解。历年考题中,方程组是每年必考的题目,这也是线性代数部分考查的重点内容。要掌握齐次和非齐次线性方程组的解的判定定理,能够熟练求解线性方程组。这部分内容是重点考查解答题的章节。特征值和特征向量也是考研的重点内容之一,题多分值大,共有三部分内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相对而言,这部分计算量是比较大的,复习的时候一定要加强练习。由于二次型与它的实对称矩阵是一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,只要正确写出二次型所对应的实对称矩阵,就可以利用相似对角化的方法解决二次型的问题了。解线性方程组和矩阵相似对角化是每年两道大题最容易考查的地方。
线性代数的知识点比较多而且比较松散,而考研数学试题的综合性非常强,所以大家在复习的时候一定要注意总结常用的结论、性质,例如伴随矩阵的秩、矩阵相乘的秩等等,抓住重点,解决难点,只要我们把握住了命题规律,就一定能取得线代的高分,并最终取得考研数学的胜利。
篇10:考研数学线性代数复习
考研数学线性代数复习
考研数学线性代数相比较高等数学和概率论的复习而言,呈现明显的知识点,概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系。因此,考研数学线性代数暑期复习重点应充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使学知识能融会贯通,举一反三。为了让考生在暑期复习中能将线性代数提高到一个新的层次,这里数学辅导名师给大家重点说一下历年考研重点及复习思路。
1。行列式的重点是计算,利用性质熟练准确的计算出行列式的值。
2。矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也是运算,其运算分两个层次:
(1)矩阵的符号运算
(2)具体矩阵的数值运算
3。关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的.掌握,并要注意推证过程中逻辑的正确性及反证法的使用。
4。向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。
5。于特征值、特征向量,要求基本上有三点:
(1)要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程OλE-AO=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。
(2)有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A的特征值,特征向量来确不定期A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A。
(3)相似对角化以后的应用,在线性代数中至少可用来计算行列式及An。
6。将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:
(1)化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些。
(2)二次型的正定性问题,对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。
() 中国大学网 ■篇11:考研数学 重视线性代数
人的记忆效果随着时间的推移而迅速下降,这是正常的现象。一是可以通过反复加强记忆,第二种办法就是加强要点和重点的作用,提纲挈领,从而掌握全局。因此,大家在第一轮全面复习的时候同时就要兼顾复习要点,让要点成为复习中的“刀刃”,起到提纲挈领、统领全局的作用。那么,考研数学复习中的“刀刃”都有哪些呢?考研辅导专家认为,高等数学是考研数学的重中之重,所以大家在备考高等数学时要特别注意。
地毯式的反复练习
大家在复习过程中,要对重要定理、重要的公式或者重要的结论应该经常翻一翻,已经有印象的,反复练习可以加深印象,使自己保持一个良好的状态。参加硕士研究生入学考试这种选拔性的考试跟体育竞技有些类似,想要保持一个良好的状态,必须把要考的内容在脑海里面反复强调。很多同学说把代数复习完以后,高等数学忘了,复习这个忘了那个,这个很正常,不要因为这个原因,就认为考不好数学,每个正常的人都会有这样的`感觉。考研辅导专家提醒考生,要解决这个困难,只有通过反复复习,学习英语亦是如此,通过反复使自己能够随时调用数学知识。记忆的关键就在于重复,如果大家能够把学习变成一种习惯,那势必会让你的复习锦上添花,也不会对学习产生抵触情绪,这样一来,效率和效果自然会高上无数倍。
篇12:考研数学 重视线性代数
在考研数学中,线性代数部分所占分值为22%,虽然所占比例不及高数分值高,但同样重要。在线性代数的学习上,同学们经常走两个极端,有一部分同学感觉线性代数这部分是比较好掌握的,也有一部分同学感觉这部分难度比较大,这个跟线性代数本身的特点应该说是紧密相连的。线性代数课程的特点是系统,前后知识的联系非常紧密,概念性很强,对于抽象性与逻辑性有较高的要求,题型比较固定。考研辅导专家建议考生,在复习时一定要抓住线性代数前后联系的这样一些关键点,把知识连贯起来,就会发现掌握起来是比较容易的。
考研辅导老师提醒考生,考研数学不同于大学数学,大家在看书时如果遇到课程中超前的知识点可以暂时记住,查一下教材上相应的知识点,做个标记,等在下面的章节中复习到或下次老师讲到此类知识点的时候,再回过头来看一看做标记的题目,加以巩固。
篇13:考研数学新大纲解析:线性代数命题规律
考研数学新大纲解析:线性代数命题规律
线性代数是考研数学考查的重要部分,毋庸置疑,线性代数在考研数学试卷中也将占据不可忽视的重要地位。线性代数一共六章的内容:其中第一章行列式,它在整张试卷中所占比例不是很大,一般以填空题和选择题为主,但它是必考内容,即便没有单独考查的题目,也会在其它的试题中给以考查,如求特征值就是计算相应的行列式。
行列式的重点内容是掌握计算行列式的方法,同学们要掌握降阶法求行列式,以及其它的像爪型、三对角、范德蒙、行和或列和相等的行列式的求法。矩阵是后面各章节的基础。矩阵的概念、运算及理论贯穿线性代数的始末。这部分考点较多,像逆矩阵、伴随矩阵、转置矩阵、矩阵的幂、矩阵的行列式等概念的定义、性质、运算等等是每年考研的重点内容,同学们在复习的时候一定要注意归纳总结才可能掌握好。向量组的线性相关性是线性代数的重点也是考研的难点,大家复习的`时候一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定方法并能灵活应用,还要弄清楚线性表出、向量组的秩及线性方程组等之间的联系,从各个侧面加强对线性相关性的理解。
历年考题中,方程组是每年必考的题目,这也是线性代数部分考查的重点内容。要掌握齐次和非齐次线性方程组的解的判定定理,能够熟练求解线性方程组。这部分内容是重点考查解答题的章节。特征值和特征向量也是考研的重点内容之一,题多分值大,共有三部分内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相对而言,这部分计算量是比较大的,复习的时候一定要加强练习。由于二次型与它的实对称矩阵是一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,只要正确写出二次型所对应的实对称矩阵,就可以利用相似对角化的方法解决二次型的问题了。解线性方程组和矩阵相似对角化是每年两道大题最容易考查的地方。
线性代数的知识点比较多而且比较松散,而考研数学试题的综合性非常强,所以大家在复习的时候一定要注意总结常用的结论、性质,例如伴随矩阵的秩、矩阵相乘的秩等等,抓住重点,解决难点,只要我们把握住了命题规律,就一定能取得线代的高分,并最终取在20考研数学的考试中取得佳绩。
篇14:考研数学:线性代数各知识点考试内容及要求
在考研数学的各个卷种中,线性代数占22%,约34分,每年的考题里,线性代数稳定的考查2道选择题、1道填空题和2道解答题。
一、行列式
考试内容:
行列式的概念和基本性质;行列式按行(列)展开定理;
考试要求:
1.了解行列式的概念,掌握行列式的性质。
二、矩阵
考试内容:
矩阵的概念;矩阵的线性运算;矩阵的乘法;方阵的幂;方阵乘积的行列式;矩阵的转置;逆矩阵的概念和性质;矩阵可逆的充分必要条件;伴随矩阵;矩阵的初等变换;初等矩阵;矩阵的秩矩阵等价;分块矩阵及其运算;
考试要求:
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的`性质。
3.理解逆矩阵的概念,会用伴随矩阵求逆矩阵。
4.理解矩阵的初等变换的概念,
5.了解分块矩阵及其运算。
三、向量
考试内容:
向量的概念;向量的线性组合和线性表示;向量组的线性相关与线性无关;向量组的极大线性无关组等价向量组;向量组的秩;向量组的秩与矩阵的秩之间的关系;向量空间以及相关概念;n维向量空间的基变换和坐标变换;过渡矩阵;向量的内积;线性无关向量组的正交规范化方法;规范正交基;正交矩阵及其性质
考试要求:
1.理解n维向量、向量的线性组合与线性表示的概念。
2.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。
3.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系
4.了解n维向量空间、子空间、基底、维数、坐标等概念。
5.了解基变换和坐标变换公式,会求过渡矩阵。
6.了解内积的概念,
7.了解规范正交基、正交矩阵的概念以及它们的性质。
四、线性方程组
考试内容:
线性方程组的克莱姆(Cramer)法则;齐次线性方程组有非零解的充分必要条件;非齐次线性方程组有解的充分必要条件解空间;非齐次线性方程组的通解
考试要求
l.会用克莱姆法则。
2.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。
3.理解非齐次线性方程组解的结构及通解的概念。
4.掌握用初等行变换求解线性方程组的方法。
五、矩阵的特征值及特征向量
考试内容:
矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质;矩阵可相似对角化的充分必要条件及相似对角矩阵;实对称矩阵的特征值、特征向量及相似对角矩阵
考试要求:
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。
3.掌握实对称矩阵的特征值和特征向量的性质。
六、二次型
考试内容:
二次型及其矩阵表示;合同变换与合同矩阵二次型的秩;惯性定理;二次型的标准形和规范形;用正交变换和配方法化二次型为标准形;二次型及其矩阵的正定性
考试要求:
1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念了解二次型的标准形、规范形的概念以及惯性定理。
2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形。
3.理解正定二次型、正定矩阵的概念,并掌握其判别法。
扩展阅读:
篇15:考研新大纲线性代数命题规律
2013考研新大纲线性代数命题规律
2013年数学考试大纲刚刚已经出来了,和2012年相比,概率稍微有些变化,数三的“两个及两个以上随机变量的函数的分布”改为“两个及两个以上随机变量简单函数的分布”,而高数只是将“克莱姆法则”改为“克拉默法则”,线性代数基本没有变化。这是数学学科本身的严谨性和稳定性的体现,对于考研的同学们来说也是一个好消息。线性代数每年考查的题型题量很固定,考查内容也很稳定,以考察计算题为主,相对来说,是同学们复习比较好拿分的科目。下面我就线性代数的考查特点给大家做一个分析。
线性代数一共六章的内容。其中第一章行列式,它在整张试卷中所占比例不是很大,一般以填空题和选择题为主,但它是必考内容,即便没有单独考查的题目,也会在其它的试题中给以考查,如求特征值就是计算相应的行列式。行列式的重点内容是掌握计算行列式的方法,同学们要掌握降阶法求行列式,以及其它的像爪型、三对角、范德蒙、行和或列和相等的行列式的求法。矩阵是后面各章节的基础。矩阵的概念、运算及理论贯穿线性代数的始末。这部分考点较多,像逆矩阵、伴随矩阵、转置矩阵、矩阵的幂、矩阵的行列式等概念的定义、性质、运算等等是每年考研的重点内容,同学们在复习的时候一定要注意归纳总结才可能掌握好。向量组的线性相关性是线性代数的重点也是考研的难点,大家复习的时候一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定方法并能灵活应用,还要弄清楚线性表出、向量组的秩及线性方程组等之间的联系,从各个侧面加强对线性相关性的理解。历年考题中,方程组是每年必考的题目,这也是线性代数部分考查的重点内容。要掌握齐次和非齐次线性方程组的解的判定定理,能够熟练求解线性方程组。这部分内容是重点考查解答题的章节。特征值和特征向量也是考研的重点内容之一,题多分值大,共有三部分内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相对而言,这部分计算量是比较大的,复习的`时候一定要加强练习。由于二次型与它的实对称矩阵是一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,只要正确写出二次型所对应的实对称矩阵,就可以利用相似对角化的方法解决二次型的问题了。解线性方程组和矩阵相似对角化是每年两道大题最容易考查的地方。
线性代数的知识点比较多而且比较松散,而考研数学试题的综合性非常强,所以大家在复习的时候一定要注意总结常用的结论、性质,例如伴随矩阵的秩、矩阵相乘的秩等等,抓住重点,解决难点,只要我们把握住了命题规律,就一定能取得线代的高分,并最终取得考研数学的胜利。
相关链接
2013考研政治 中共党史会议汇总
(中国大学网考研 ) ■★ 数学考研复习计划
★ 考研数学支招指南
【考研数学大纲线性代数重要知识点总结(集锦15篇)】相关文章:
考研数学现阶段复习规划及方法2022-09-03
考研数学线性代数复习四点同步抓2023-07-28
考研数学备考 字斟句酌辟蹊径2023-03-02
考研数学:做题总结分析才算真正“做题”2023-11-05
考研数学基础复习详细安排2024-05-11
考研数学复习不知道如何下手怎么办2023-09-24
考研数学春季复习三十六计2023-06-05
考研数学全年复习计划2022-11-11
考研数学零基础逆袭135分:夯实基础是核心2023-07-22
寒假来袭,考研数学如何复习?2022-11-16