生物质废弃物制氢技术(通用8篇)由网友“每天睡不醒”投稿提供,这次小编给大家整理过的生物质废弃物制氢技术,供大家阅读参考,也相信能帮助到您。
篇1:生物质废弃物制氢技术
摘要:本文介绍了利用生物质废弃物和微生物制氢的几种技术,分析了每种技术的制氢原理、制氢效益和发展状况;并提出生物质催化气化制氢是实现能源结构转变及环境保护的有效手段,是很有前景的一种生物质废弃物制氢方法。
关键词:生物质制氢催化气化
1前言
目前,80%以上的能源与有机原料来自于化石能源。随着化石能源的枯竭及其使用所带来的环境问题的日益严重,人类将面临严重的能源危机与环境污染。氢是一种理想的新能源,具有资源丰富,燃烧热值高,清洁无污染,适用范围广的特点。制氢的方法有很多,电解水是大规模生产氢的一种途径,然而,水分子中的氢原子结合得十分紧密,电解时要耗用大量电力,比燃烧氢气本身所产生的热量还要多,因此若直接利用火电厂供应的电力来电解水,在经济上是不可取的。各种矿物燃料制氢如天然气催化蒸汽重整等,但其作为非可再生能源,储量有限,且制氢过程会对环境造成污染。因此,利用可再生能源,如太阳能、海洋能、地热能、生物质能来制取氢气是极具有吸引力和发展前途的。利用生物质制氢可以实现CO2归零的排放,解决化石燃料能源消耗带来的温室效应问题。
篇2:生物质废弃物制氢技术
生物质催化气化制氢的主要流程如图1所示。三个过程决定最终氢气的产量和质量,即生物质气化过程、合成气催化变换过程和氢气分离、净化过程。
2.1生物质气化
生物质热化学气化是指将预处理过的生物质在气化介质中如:空气、纯氧、水蒸气或这三者的混合物中加热至700度以上,将生物质分解为合成气。生物质气化的主要产物为H2、CO2、CO、CH4,混合气的成分组成比因气化温度、压力、气化停留时间以及催化剂的不同而不同:气化反应器的选择也是决定混合气组成的一个主要因素。
2.1.1气化反应器
用于生物质气化的反应器主要有上吸式气化炉、下吸式气化炉及循环流化床等,它们在生物质热解气化方面各有其独特的结构和优缺点。图2、3和4分别是这三种气化炉的原理示意图。
从图中可以看出,这三种气化炉各有其不同的反应区分布,并且气固流动方向不同,因而其对于产氢的作用大小也不尽相同。
(1)上吸式气化炉
气固呈逆向流动。在运行过程中湿物料从顶部加入后被上升的热气流干燥而将水蒸气带走,干燥后的原料继续下降并经热气流加热而迅速发生热分解反应。物料中的挥发分被释放,剩余的炭继续下降时与上升的CO2及水蒸气发生反应产生CO和H2。在底部,余下的炭在空气中燃烧,放出热量,为整个气化过程供热。由图2,可见,上吸式气化炉具有结构简单,操作可行性强的优点,但湿物料从顶部下降时,物料中的部分水分被上升的热气流带走,使产品气中H2的含量减少。
(2)下吸式气化炉
气固呈顺向流动。运行时物料由上部储料仓向下移动,边移动边进行干燥与热分解的过程。在经过缩嘴时,与喷进的空气发生燃烧反应,剩余的炭落入缩嘴下方,与气流中的CO2,和水蒸气发生反应产生CO和H2。可以看出,下吸式气化炉中的缩嘴延长了气相停留时间,使焦油经高温区裂解,因而气体中的焦油含量比较少;同时,物料中的水分参加反应,使产品气中的H2含量增加。但由图3可见,下吸式气化炉结构比较复杂,当缩嘴直径较小时,物料流动性差,很容易发生物料架接,使气化过程不稳定。对气化原料尺寸要求比较严格。
(3)循环流化床气化炉(CFBG)
物料被加进高温流化床后,发生快速热分解,生成气体、焦炭和焦油,焦炭随上升气流与CO2和水蒸气进行还原反应,焦油则在高温环境下继续裂解,未反应完的炭粒在出口处被分离出来,经循环管送入流化床底部,与从底部进入的空气发生燃烧反应,放出热量,为整个气化过程供热。由上述分析可知,CFBG的热解反应处于高温区,并且CFBG的传热条件好,加热速率高,可操作性强,产品气的质量也较高,其中H2的含量也较高。
综合分析上述三种气化炉可知,下吸式气化炉在提高产品气的氢气含量方面具有其优越性,但其结构复杂,可操作性差,因而如何改进下吸式气化炉的物料流动性,提高其气化稳定性是下吸式气化炉需要研究的。
2.2水蒸气气化、合成气催化变换
表1是在图2所示的下吸式气化炉条件下,以混合木块为气化原料,气化介质为空气,燃烧区温度为840度时气化产物的组成。
从表1可见,气化产物中,有相当一部分是CO。因此在生物质气化中,为了提高氢气产出量,需在气化介质中加入水蒸气。通常认为,在蒸汽流态化条件下发生下述反应:
上述反应导致床灰中的残炭含量减少,气体产物中的CO2和H2含量增多。生物质炭与水蒸气的气化反应的反应式及平衡常数如表2所示。
&nbs
p;
从表2可见,只有在相当高的温度下,炭的气化反应才可能发生。因此,如何设计催化剂降低炭的气化反应温度,促进炭的气化反应的发生是催化气化制氢的一个重要研究内容。
2.3氢气分离、净化
(1)金属氢化物分离法
氢同金属反应生成金属氢化物的反应是可逆反应。当氢同金属直接化合时,生成金属氢化物,当加热和降低压力时,金属氢化物发生分解,生成金属和氢气,从而达到分离和纯化氢气的目的。利用金属氢化物分离法纯化的氢气,纯度高且不受原料气质量的影响。
(2)变压吸附法
在常温和不同压力条件下,利用吸附剂对氢气中杂质组分的吸附容量不同而加以分离。其主要优点是:一次吸附能除去氢气中多种杂质组分,纯化流程简单,当原料气中氢含量比较低时,变压吸附法具有突出的优越性。
(3)低温分离法
在低温条件下,使气体混合物中的部分气体冷凝而达到分离。此法适合于含氢量范围较宽的原料气,一般为30%-80%。
(4)钯合金薄膜扩散法
是根据氢气在通过钯合金薄膜时进行选择性扩散而纯化氢的一种方法。此法可用于处理含氢量低的原料气,且氢气纯度不受原料气质量的影响。
(5)聚合物薄膜扩散法
这是利用差分扩散速率原理纯化氢的方法,输出的氢气纯度受原料气含氢量和输入气流中的其他成分的影响。
利用各种氢气纯化法使氢气纯化,所得的氢气回收率有很大差别。金属氢化物分离法、变压吸附法和聚合物薄膜扩散法的回收率一般在70%-85%;低温分离法回收率达到95%;钯合金薄膜扩散法采用富氢原料气时,回收率可达99%。
3等离子体热解、气化制氢
用等离子体进行生物质转化是一项完全不同于传统生物质转化形式的`工艺,引起了许多研究者的普遍注意。目前产生等离子的手段有很多,如聚集炉,极光束,闪光管,微波等离子以及电弧等离子等。其中电弧等离子体是一种典型的热等离子体,其特点是温度极高,可达到上万度,并且这种等离子体还含有大量各种类型的带电离子、中性离子以及电子等活性物种。生物质在氮的气氛下经电弧等离子体热解后,产品气中的主要组分就是H2和CO,并完全不含焦油。在等离子体气化中,可通进水蒸气,以调节H2和CO的比例,为制取其他液体燃料作准备。
4微生物制氢
微生物制氢技术亦受人们的关注。利用微生物在常温常压下进行酶催化反应可制得氢气。根据微生物生长所需能源来源,能够产生氢气的微生物,大体上可分为两大类:如下图所示。
一类是光合菌,利用有机酸通过光产生H2和CO2。利用光合菌从有机酸制氢的研究在七、八十年代就相当成熟。但由于其原料来源于有机酸,限制了这种技术的工业化大规模使用。
另一类是厌氧菌,利用碳水化合物、蛋白质等,产生H2、CO2和有机酸。目前,利用厌氧进行微生物制氢的研究大体上可分为三种类型。一是采用纯菌种和固定技术进行微生物制氢,但因其发酵条件要求严格,目前还处于实验室研究阶段。二是利用厌氧活性污泥进行有机废水发酵法生物制氢;三是利用连续非固定化高效产氢细菌使含有碳水化合物、蛋白质等的物质分解产氢,其氢气转化率可达30%左右。
5研究进展
5.1生物质气化技术
我国的生物质气化技术已达到工业示范和应用阶段。中国科学院广州能源所多年来进行了生物质气化技术的研究,其气化产物中氢气约占10%,热值达11MJ/m3。在国外,由于转化技术水平较高,生物质气化已能大规模生产水煤气,且氢气含量也较高。
5.2水蒸气催化变换
国外对生物质的水蒸气催化气化进行了实验研究,其单位kg生物质产氢率从30~80g不等。美国夏威夷大学和天然气能源研究所合作建立的一套流化床气化制氢装置在水蒸气和生物质的摩尔比为1.7的情况下,每千克生物质(去湿、除灰)可产生128g氢气,达到该生物质最大理论产氢量的78%.
表3是以焦煤、橄榄壳以及向日葵杆为原料进行的水蒸气催化气化实验结果。从表3可以看出,在催化剂作用下,即使气化温度比较低(450度),也可得到较高的氢含量(34.7%)。另外氢气的产出也随气化原料和催化剂的不同而不同。
5.3氢气分离
目前的Pd膜对H2的透过量过低,分离大量H2时需要的费用较高。用化学气相沉积法在微孔玻璃膜上沉积SiO2可以得到较大的渗透通量和H2-N2分离因子。据报道,在600度和latm时,(latm=1.0133*10的5次方Pa),H2队SiO2膜的渗透通量达0.200.42cm3.cm-2.min-1,分离因子为500-3000,有实用的前景。表4是几种无机膜在氢分离性能上的比较。
5.4制氢系统--CMR制氢装置
;氢气的膜分离技术发展出一种将生物质气化和氢气分离合成一步的氢气膜催化反应器(CatalyticMembraneReactor,CMR),如图5所示。这种方法是在气化反应器内安置一膜催化分离器,这个膜分离器可以是附有超薄(小于25um)活性介质的平板或一束束管子。
从图5可以看出,CMR制氢的膜分离器安装在反应器内,因此需要膜分离器的耐温性能比较好。这种技术在产氢的同时将氢气分离,促进了反应向产生氢气的方向移动。因此,这种反应器可提高原料的转换率并增加氢气的产出。在CMR制技术中,膜的使用性能是一个关键因素,如Pd膜容易中毒和焦化,CO、S和As会强烈吸附于Pd膜上,导致Pd膜失效。另外Pd膜的成本也是一个关键因素。
5.5微生物制氢
目前已有利用碳水化合物发酵制氢的专利,并利用所产生的氢气作为发电的能源。90年代初中科院微生物所、浙江农业大学等单位曾进行“产氢紫色非硫光合细菌的分离与筛选研究”及“固定化光合细菌处理废水过程产氢研究”等,取得一定结果。国外也设计了一种应用光合作用细菌产氢的优化生物反应器,其规模达日产氢2800m3。该法采用各种工业和生活有机废水及农副产品的废料为基质,进行光合细菌连续培养,在产氢的同时可净化废水并获单细胞蛋白。
篇3:生物质制氢技术研究进展
生物质制氢技术研究进展
氢能以其清洁,来源及用途广泛等优点成为最有希望的替代能源之一,用可再生能源制氢是氢能发展的必然趋势.由于生物质制氢具有一系列独特的优点,它已成为发展氢经济颇具前景的研究领域之一.生物质制氢技术可以分为两类,一类是以生物质为原料利用热物理化学方法制取氢气,如生物质气化制氢,超临界转化制氢,高温分解制氢等热化学法制氢,以及基于生物质的.甲烷、甲醇、乙醇的化学重整转化制氢等;另一类是利用生物转化途径转换制氢,包括直接生物光解,间接生物光解,光发酵,光合异养细菌水气转移反应合成氢气,暗发酵和微生物燃料电池等技术.综述了目前主要的生物质制氢技术及其发展概况,并分析了各技术的发展趋势.
作 者:于洁 肖宏 YU Jie XIAO Hong 作者单位:于洁,YU Jie(中国科学院上海生命科学研究院生命科学信息中心,上海,31;中国科学院研究生院,北京,100039)肖宏,XIAO Hong(中国科学院上海生命科学研究院生命科学信息中心,上海,200031)
刊 名:中国生物工程杂志 ISTIC PKU英文刊名:CHINA BIOTECHNOLOGY 年,卷(期): 26(5) 分类号:Q81 关键词:生物质 制氢 气化 高温分解 超临界水 微生物电池篇4:生物质废弃物催化气化制取富氢燃料气
摘 要:利用生物质氢可以实现CO2归零的排放,从根本上解决化石能源消耗带来的温室效应问题,已引起了世界各国研究者的普遍兴趣。介绍了生物质催化气化制取富氢燃料气的研究概况,给出了生物质催化气化制氢的典型流程,讨论了在气化过程中发生的主要化学反应以及影响燃料气组成和焦油含量的一些主要影响因素,如气化介质的不同及催化剂的应用等。
关键词:生物质,催化气化,制氢
0 引 言
近年来,关于生物质废弃物的热化学处理已引起了越来越广泛的注意。氢气是生物质热化学处理中得到的高品位的洁净能源。由于氢在燃料电池及作为运输燃料在内燃机中的广泛应用,从生物质气化中制取氢气已引起了很多国家的研究兴趣。在生物质气化制氢过程中,低温下焦油的生成是影响燃气质量和氢含量的一个重要因素,因此高温、水蒸气气化以及加催化剂等气化工艺是改善燃气质量的有效措施。生物质气化技术在国内外已得到了相当广泛的研究,而对生物质气化过程中使用催化剂的研究还比较少。在生物质气化过程中使用催化剂,可以有效改善气体品质,促进焦油裂解[1-4],本文就目前生物质催化气化在国内外的研究情况作一些讨论。
篇5:生物质废弃物催化气化制取富氢燃料气
从总体上来说,生物质催化气化制氢的研究在国内外还处于实验室研究阶段,我国在这方面的研究比较薄弱,国外的研究主要集中在美国、西班牙、意大利等国家。[1-5]
意大利L'Aquila大学的Rapagna等利用二级反应器(一级为流化床气化反应器,一级为固定床催化变换反应器)进行了杏仁壳的镍基催化剂催化气化实验,其制得的产品气中氢气体积含量可高达60%。美国夏威夷大学和天然气能源研究所合作建立的一套流化床气化制氢装置在水蒸气/生物质的摩尔比为1。7的情况下,可产生128g氢气/kg生物质(去湿、除灰),达到了该生物质最大理论产氢量的78%。
2 生物质催化气化典型流程
生物质催化气化系统主要包括两大部分(见第34页图1),一是生物质气化部分,在流化床气化炉(或其它形式的气化炉)内进行;一是气化气催化交换部分,在装有催化剂的固定床内进行。生物质废弃物由螺旋进料器进入预热过的`流化床,在流化床内发生热解反应产生热解气和焦炭等,热解产物再与从底部进来的空气或水蒸气等发生化学反应产生气化气,气化气从流化床上部进入旋风分离器,将炭粒分离,然后进入焦油裂解床(通常为白云石),进行焦油的初步催化裂解,经焦油裂解后的气化气再进入通常装有镍基催化的固定床内进行进一步的催化裂解及变换反应。
3 生物质气化过程中发生的主要化学反应
生物质在气化过程中发生热解反应、燃烧反应及气化反应,见第33页表1。在热解反应中,生物质被裂解为焦炭、焦油和燃气,部分焦油在高温条件下继续裂解为燃气。在燃烧反应中主要发生碳氢化合物和CO的氧化反应。在气化反应中主要发生碳氢化合物和CO的水蒸气气化反应,显而易见,这是增加燃气中氢气含量的一个重要途径。
可以看到,在生物质气化过程中发生的化学反应复杂,研究其中每个化学反应的发生程度及其相互影响关系,进而设计催化剂,促进目的产物的产生是比较困难的,目前国内外大多是采用商业蒸汽重整催化剂及天然矿石等。
4 影响燃料气组成和焦油含量的主要因素
4.1 气化介质生物质
气化介质一般为空气(氧气)、水蒸气或氧气和水蒸气的混合气。气化介质的选择可以影响燃料气的组成和焦油处理的难易。Corella等认为在其它条件相同且采用白云石作催化剂时,以水蒸气或水蒸气和纯氧的混合物作为气化介质与以空气作为气化介质相比,前者在气化过程中产生的焦油更容易裂解。
焦油的成分非常复杂,可以分析出的成分有100多种,还有很多成分难以确定;主要成分不少于20种,大部分是苯的衍生物及多环芳烃;其中含量大于5%的大约有7种,它们是:苯、萘、甲苯、二甲苯、苯乙烯、酚和茚,其它成分的含量一般都小于5%,而且在高温下很多成分会分解。对大部分焦油成分来说,水蒸气在其裂解过程中起到关键的作用,因为它能和某些焦油成分发生反应,生成CO和H2等气体,既减少炭黑的产生,又提高可燃气的产量。例如,萘在催化裂解时,发生下述反应:
由此可知,水蒸气非常有利于焦油裂解和可燃气体的产生。气化介质为空气时,产生低热值燃气,热值为4MJ/Nm3~7MJ/Nm3,氢气含量为8%~14%(体积),气化介质为水蒸气时产生中热值燃气,热值为10MJ/Nm3~16MJ/Nm3,氢气含量为30%~60%(体积)。
4.2 催化剂应用及催化转化反应机理研究
将催化剂用于生物质热解气化主要有三个作用:一是可以降低热解气化反应温度,减少能耗;二是可以减少气化介质,如水蒸气的投入;三是可以进行定向催化裂解,促进反应达到平衡,得到更多的目的产物。在催化剂应用过程中,考虑到催化剂的机械强度及使用寿命等问题,一般将生物质气化和催化交换设在不同的反应器,见图1。但另设一固定床催化反应器,既增加了系统阻力,又增加了投资成本;如将生物质气化和催化交换设在同一反应器,就对催化剂的活性、耐温性能、机械强度及使用寿命等提出了比较高的要求。同时由于焦油催化裂解的附加值小,其成本要很低才有实际意义,因此人们除利用石油工业的催化剂外,主要使用一些天然产物。
目前用于生物质催化气化的催化剂有白云石、镍基催化剂、高碳烃或低碳烃水蒸气重整催化剂、方解石和菱镁矿等。这几种催化剂的成分组成见第35页表2。
Corella等认为白云石可以消除气化气中90%~95%的焦油,即在气化炉出口焦油含量为2g/m3~20g/m3,经过白云石床层后焦油含量降低为0。5g/m3~1。0g/m3。
Delgado等通过实验对白云石、方解石、菱镁矿的催化活性进行了比较,从实验结果分析,在裂解焦油方面,这三种矿石的活性顺序为:白云石(CaO-MgO)>方解石(MgO)>菱镁矿(CaO)。Delgado等认为这是由于在白云石中,两种氧化物的混合改变了Ca和Mg原子的排列顺序所致。关于焦油的催化裂解机理,Corella等认为在水蒸气重整生物质气化气消除焦油的反应过程中,同时可以发生CO2干重整反应,即CO2会与焦油及部分低碳烃发生反应,促进焦油的分解。
4.3 气化炉
用于生物质气化的反应器主要有上吸式气化炉、下吸式气化炉及循环流化床(CFBG)等,见图2~图4。上吸式气化炉结构简单,操作可行性强,但湿物料从顶部下降时,物料中的部分水分被上升的热气流带走,使产品气中H2的含量减少。下吸式气化炉在提高产品气的H2含量方面具有其优越性,但其结构复杂,可操作性差;CFBG具有细颗粒物料、高流化速度以及炭的不断循环等优点,因而相对于其它气化炉来说,无论是在产品气的氢气含量方面还是操作性方面,都是一种较理想的气化制氢形式。
4.4 气化工艺生物质催化气化工艺选择主要有:
工艺(2)系统简单,但对催化剂抗耐磨性要求较高,且反应气与催化剂接触不充分,催化剂利用效率低;工艺(1)和工艺(3)将生物质气化气催化裂解部分使用独立反应器,改善了催化剂的使用环境,但需外加热源,以达到催化反应所需温度,运行成本较高。另外不管裂解炉采用固定床还是流化床,气化气体中灰分或炭粒都有可能引起裂解炉进口堵塞。所以裂解炉和气化炉之间需增加气-固分离装置,但不能使气体温度下降太多,这就使系统更加复杂。
5 结 论
(1)生物质定向催化气化制氢的研究在国内外还处于实验室研究阶段,在我国的研究尤其薄弱。
(2)对生物质催化气化及焦油裂解的机理的研究还远远不够。
(3)用于生物质催化气化的催化剂主要是白云石和镍基催化剂,白云石价格低廉,但催化效果不如镍基催化剂。
(4)焦油的催化裂解是提高生物质催化气化产氢量的一个重要途径,也是这个课题今后的一个重要发展方向。
篇6:超临界水条件下生物质气化制氢
超临界水条件下生物质气化制氢
摘要:生物质制氢是农业废弃物资源化利用的一项很有发展前途的技术.介绍了超临界水条件下生物质的气化制氢技术,论述了温度、压力、停留时间以及反应器对气化产物组成及气化制氢效果的`影响,着重阐述了催化剂的影响.分析了目前超临界水气化制氢在有机废弃物资源化应用中存在的主要问题,并展望了超临界水气化制氢的研究前景.作 者:王倩 李光明 王华 WANG Qian LI Guangming WANG Hua 作者单位:同济大学环境科学与工程学院,污染控制与资源化研究国家重点实验室,上海,92 期 刊:化工进展 ISTICPKU Journal:CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 年,卷(期):, 25(11) 分类号:X712 关键词:生物质 资源化 气化 超临界水 氢气篇7:农作物秸秆废弃物厌氧发酵生物制氢的研究
农作物秸秆废弃物厌氧发酵生物制氢的研究
摘要:文章报道麦草秸秆水解-发酵两步耦合生物制氢的研究结果.在该研究条件下,麦草秸秆的产氢能力达到68.1mLH2/gTVS,与未经处理的底物相比提高了约135倍.此外,对麦草秸秆的`产氢机理也进行了探讨.作 者:李燕红 林钰 杏艳 樊耀亭 张亚辉 作者单位:李燕红(郑州大学化学系,郑州,450052;郑州大学化工学院,郑州,450002)林钰(河南省教育学院化学系,郑州,450014)
杏艳,樊耀亭,张亚辉(郑州大学化学系,郑州,450052)
期 刊:环境科学与技术 ISTICPKU Journal:ENVIRONMENTAL SCIENCE & TECHNOLOGY 年,卷(期):2006, 29(11) 分类号:X17 关键词:麦秆废弃物 预处理 生物制氢 厌氧发酵篇8:污泥发酵制氢技术的现状和前景展望
污泥发酵制氢技术的现状和前景展望
摘要:归纳了目前污泥生物制氢技术方面的研究现状,包括对污泥的预处理方法、污泥发酵生物制氢的影响因素以及接种菌群特性等方面,并结合国内外的`研究现状对目前存在的问题进行分析,对该技术的发展前景进行展望.作 者:郭婉茜 郭泽冲 任南琪 Guo Wanqian Guo Zechong Ren Nanqi 作者单位:哈尔滨工业大学城市水资源与水环境国家重点实验室,哈尔滨,150090 期 刊:中国科技论文在线 Journal:SCIENCEPAPER ONLINE 年,卷(期):2010, 5(5) 分类号:X505 关键词:污泥 发酵制氢 现状 前景★ 管道工程施工方案
★ 电厂实习心得总结
【生物质废弃物制氢技术(通用8篇)】相关文章:
技术研发个人简历表格2023-11-28
乙醛和新制氢氧化铜方程式2022-05-17
高二化学知识点总结精选2022-11-02
油脂教学设计2023-04-26
办事处管理制度2022-07-01
安全生产活动工作总结2023-04-16
乡镇安全生产的活动方案2023-10-04
高二化学第一章知识点2022-11-15
个人简历-技术研发工程师2022-04-29
汽车节能与环保的论文2023-03-21