如何选择路由协议

时间:2023-03-12 08:00:24 其他范文 收藏本文 下载本文

如何选择路由协议(精选13篇)由网友“安德”投稿提供,下面是小编为大家整理后的如何选择路由协议,仅供大家参考借鉴,希望大家喜欢,并能积极分享!

如何选择路由协议

篇1:如何选择路由协议

当网络启用了路由协议,网络便具有了能够自动更新路由表的强大功能,但是使用象RIP/RIP2、OSPF或IGRP/EIGRP等一些主要的内部网关协议(InteriorGatewayProtocol,IGP)都有一定的协定。

内部网关协议首先适合于在那些只有单个管理员负责网络操作和运行的地方;否则,将会出现配置错误导致网络性能降低或是导致网络运行不稳定的情况。对于由许多管理员共同分担责任的网络,如Internet,则考虑使用EGP协议(InteriorGatewayProtocol,外部网关协议),如BGP4。

如果网络中只有一个路由器,不需要使用路由协议;只有当网络中具有多个路由器时,才有必要让它们去共享信息。但如果仅有小型网络,完全可以通过静态路由手动地更新路由表。

路由信息协议

RIP(RoutingInformationProtocol)协议基于一个被称为“routed”的程序,该程序运行在BSDI版本的Unix系统之上,并在1988年被标准化在RFC1058中。而在RFC1388中所描述的版本2中,增加了对VLSM(VariableLengthSubnetMasks,可变长子网屏蔽)的支持,但没有弥补该协议的主要缺陷。例如,在有多重路径到相同目标的网络中,RIP确定使用一条可选择的路径将花费许多时间,在没有多重路径的网络中,RIP协议已经被广泛使用。

RIP协议被列为距离矢量协议,这意味着它使用距离来决定最佳路径,如通过路由跳数来衡量。路由器每30秒互相发送广播信息。收到广播信息的每个路由器增加一个跳数。如果广播信息经过多个路由器收到,到这个路由器具有最低跳数的路径是被选中的路径。如果首选的路径不能正常工作,那么具有较高跳数的路径被作为备份。

对于RIP协议(和其他路由协议),网络上的路由器在一条路径不能用时必须经历决定替代路径的过程,这个过程称为收敛(Convergence)。RIP协议花费大量的时间用于收敛是个主要的问题。在RIP协议认识到路径不能达到前,它被设为等待,直到它已错过6次更新总共180秒时间。然后,在使用新路径更新路由表前,它等待另一个可行路径的下一个信息的到来。这意味着在备份路径被使用前至少经过了3分钟,这对于多数应用程序超时是相当长的时间。

RIP协议的另一个基本问题是,当选择路径时它忽略了连接速度问题。例如,如果一条由所有快速以太网连接组成的路径比包含一个10Mbps以太网连接的路径远一个跳数,具有较慢10Mbps以太网连接的路径将被选定作为最佳路径。

RIP协议的原始版本不能应用VLSM,因此不能分割地址空间以最大效率地应用有限的IP地址。RIP2协议通过引入子网屏蔽与每一路由广播信息一起使用实现了这个功能。

路由协议还应该能防止数据包进入循环,或落入路由选择循环,这是由于多余连接影响网络的问题。RIP协议假定如果从网络的一个终端到另一个终端的路由跳超过15个,那么一定牵涉到了循环。因此当一个路径达到16跳,将被认为是达不到的。显然,这限制了RIP协议只能在网络上的使用。

RIP的最大问题涉及到具有多余路径的较大网络。如果网络没有多余的路径,RIP协议将很好地工作,它是被几乎每个支持路径选择的厂商实施的Internet标准,

RIP协议适用于多数服务器操作系统,它的配置和障碍修复非常容易。对于规模较大的网络,或具有多余路径的网络,应该考虑使用其它路由协议。

OSPF2

OSPF2是类似RIP协议的Internet标准,可以弥补RIP协议的缺点。1991年在RFC1247中它被第一次标准化;最新的版本是在RFC2328中。但是与RIP协议不同,OSPF是一套链路状态路由协议,这意

味着路由选择的变化基于网络中路由器物理连接的状态与速度,并且变化被立即广播到网络中的每一个路由器。

当一个OSPF路由器第一次被激活,它使用OSPF的“hello协议”来发现与它连接的邻节点,然后用LSA(链路状态广播信息)等和这些路由器交换链路状态信息。每个路由器都创建了由每个接口、对应邻节点和接口速度组成的数据库。每个路由器从邻接路由器收到的LSA被继续向各自的邻接路由器传递,直到网络中的每个路由器收到了所有其它路由器的LSA。

链路状态数据库不同于路由表,根据数据库中的信息,每个路由器计算到网络的每一目标的一条路径,创建以它为根的路由拓扑结构树,其中包含了形成路由表基础的最短路径优先树(SPF树)。LSA每30分钟被交换一次,除非网络拓扑结构有变化。例如,如果接口变化,信息立刻通过网络广播;如果有多余路径,收敛将重新计算SPF树。计算SPF树所需的时间取决于网络规模的大小。因为这些计算,路由器运行OSPF需要占用更多CPU资源。

一种弥补OSPF协议占用CPU和内存资源的方法是将网络分成独立的层次域,称为区域(Area)。每个路由器仅与它们自己区域内的其它路由器交换LSA。Area0被作为主干区域,所有区域必须与Area0相邻接。在ABR(区域边界路由器,AreaBorderRouter)上定义了两个区域之间的边界。ABR与Area0和另一个非主干区域至少分别有一个接口。最优设计的OSPF网络包含通过VLSM与每个区域邻接的主干网络。这使得在路由表的一个条目中描述多个网络成为可能。

虽然OSPF协议是RIP协议强大的替代品,但是它执行时需要更多的路由器资源。如果网络中正在运转的是RIP协议,并且没有发生任何问题,仍然可以继续使用。但是如果想在网络中利用基于标准协议的多余链路,OSPF协议是更好的选择。

增强内部网关路由协议

在Cisco公司的产品中,EIGRP(EnhancedInteriorGatewayRontingProtocol)协议具有一些优势。最重要的是它能迅速广播链路状态的变化。但EIGRP协议的最大缺点是没有标准化。

与OSPF协议一样,EIGRP路由器寻找它们的邻接路由器并交换“hello”数据包。EIGRP协议每隔5秒传送“hello”数据包。如果失败3次,邻接路由器则被认为是宕机状态,替代的路径将被使用。

当本地路由器的链路状态发生变化,在新信息基础上它将重新计算拓扑结构表。OSPF协议此时将立即向网络中的每个路由器广播链路状态的变化,而EIGRP协议将仅仅涉及到被这些变化直接影响的路由器。这使带宽和CPU资源的利用效率更高。同时,由于EIGRP协议使用了不到50%的带宽,使得在低带宽WAN链路上具有很大优势。EIGRP协议的另一个优势是它支持Novell/IPX和AppleTalk环境。如果网络正在运行的是IGRP协议,那么转换到EIGRP协议比转换到OSPF协议要容易的多。

篇2:有关路由选择协议的学习笔记

在各种路由协议中,路由选择协议还是比较常用的,于是我研究了一下路由选择协议的综合说明,在这里拿出来和大家分享一下,希望对大家有用,管理路由器需要了解路由选择协议的基础知识。你对基本的路由选择协议越熟悉,将来诊断网络路由选择协议中的故障就越容易。本文节选自研究内部和外部网关协议的基本特点的Informit网站。

开放式最短路径优先协议(OSPF)

OSPF克服了路由选择协议(RIP)中的缺陷,但是,这个协议并不是专有协议,但是,它仅支持IP路由选择协议。这个协议是以互联网工程任务组(IETF)为支持庞大的异构网络开发的Dijkstra算法为基础的一种链路状态的内部网关协议(IGP)。在至最后确定目前应用的OSPFv2期间,完成了很多有关这个问题的研究报告。链路状态通告(LSA)要发给所有的设备,从而引起路由器的大量通信。然后,OSPF就开始高效率地工作了,

这个路由选择协议使用了三个不同的数据库表记录邻居、链路状态和路由。下面是OSPF的特点:

1、开放式协议。

2、适用于小型至大型网络。

3、仅支持IP第三层路由选择协议栈。

4、链路状态路由选择协议(不像距离矢量仅发送给邻居)。

5、内部网关协议。

6、多播链路状态通告。

7、在多播地址224.0.0.5和224.0.0.6上升级。

8、IP协议号89。

9、管理距离是110。

10、衡量标准是累积成本(与带宽成反比)。

11、仅支持等价均分负载,但是,某些执行可利用服务类型请求的好处。

12、要求在那个每一个区域都有一个路由结构,每一个区域必须要接触到骨干区域(否则要使用虚拟链接等临时的补丁)。LSA、区域和状态等各种路由类型需要根据你的设计和第二层拓扑结构而定。

13、使用Dijkstra算法选择无路由自环路经,并且提供迅速的融合。这将使用LSA和SPF算法。

14、支持变长子网掩码(VLSM)和汇总(没有级别)。

15、仅支持手动汇总;这并不像增强型内部网关路由选择协议(EIGRP)那样是自动化的。只能在ABR(区域范围)或者ASBR(汇总地址)上执行。

16、基于政策的路由。

篇3:多协议路由

路由器在一条数据链路上依据多个协议(如TCP/IP和IPX)转发数据包的路由方式,

多协议路由

篇4:如何配置路由协议

管理网络带宽正变得越来越重要,在没有其他路由器的网络上,对网络接口上流出的广播通信进行路由毫无意义。这对你的路由器资源使用来说,其效率都是非常低下的。让我们来看看如何通过使用passive-interface命令,来更好的进行带宽控制。

要想正确的配置路由协议,passive-interface命令绝对不可不知。不过,如果你不是在使用动态路由协议(比如OSPF,EIGRP,或者RIP)的话,那你倒也用不到这个命令。

passive-interface命令仅仅工作于路由器配置模式(Router Configuration Mode)。当你看到如下所示的命令行提示符时,那你就知道自己已经进入该模式了:

Router(config-router)

你可以使用passive-interface命令告知动态路由协议不要通过该接口发送网络广播。这个命令可以对所有的IP路由协议生效,仅BGP除外。

不过,该命令在OSPF上工作,和在IS-IS上有点不同。用OSPF,被动指定的网络接口作为stub(末节区域)出现,并不发送和接收任何路由更新。使用RIP,IGRP,以及EIGRP时,它不发送任何路由,但是它能接收它们。同样,它也将对网络上所有非被动的接口发送广播。

使用passive-interface命令有两种方式。

指定某个接口成为被动模式,这意味着它将不会发出路由更新。

首先将所有接口设为被动模式。然后在那些你打算发送路由更新的接口上,使用no passive-interface命令。

让我们来对两种方式各看一个示例。注:两个事例都假定你已经预先添加了对路由协议是被动接口的网络(使用网络命令)。

让一个接口变成被动模式,只需要对接口进行指定。这里是一个示例:

要记住,这意味着系统通过连到另一台路由器的串行接口,将对你设置的两个网络进行广播。另外,这也没有阻止你的路由器从局域网络接口(使用RIP)接收路由更新。如果另一台路由器正巧也在局域网上,并向你的路由器发送了更新,它依旧可以收到这些更新。

Router(config)# router rip Router(config-router)# passive-interface Ethernet 0/0

将所有接口设为被动,然后单独打开某个接口,仅需使用passive-interface default和no passive-interface命令(在IOS 12.0中介绍),

下面是个示例:

Router(config)# router rip Router(config-router)# passive-interface default Router(config-router)# no passive-interface Serial 0/0

让我们来看一个简单的网络,专用于示范该命令的深层应用。假设你有2台路由器,通过一个T1回路相连,且路由器均运行RIP.每个路由器连一个局域网,电脑通过以太网卡连上局域网。

你需要每台路由器都了解对方路由器的网络,对吧?这也是为什么要使用动态路由协议的目的所在。但是在局域网上,并无其他路由器可以让这两台路由器交换路由更新。

在这种情况下,你为什么会想每30秒在局域网接口广播一次路由更新,一直持续呢?答案是你不想。这是一种对局域网带宽和电脑CPU时间的浪费。如果它只是一个小更新,它的确不会引起什么问题,但如果你能避免,何必发送这种毫无必要的通信呢?

那怎么才能消除这种毫无必要的通信呢?在每台路由器上,进入RIP配置模式(RIP Configuration mode),并使用passive-interface命令,停止在局域网端口上发送路由更新。下面是示例:

Router(config)# router RIP Router(config-router)# passive-interface Ethernet 0/0

这个,当然,假设你已经预先使用网路命令配置好了打算广播的网络。下面是个事例:

Router(config-router)# network 1.0.0……0 (the Serial network)Router(config-router)# network 2.0.0.0 (the Ethernet network) 要记住,这意味着系统通过连到另一台路由器的串行接口,将对你设置的两个网络进行广播。另外,这也没有阻止你的路由器从局域网络接口(使用RIP)接收路由更新。如果另一台路由器正巧也在局域网上,并向你的路由器发送了更新,它依旧可以收到这些更新。

篇5:路由协议设置

一、RIP 协 议

1.有关命令

全局设置

指定使用RIP 协 议 router rip

路由设置

指定与该路由器相连的网络 network network

指定与该路由器相邻的节点地址 neighbor ip-address

2.举例

498)this.style.width=498;“ alt=”“ />

Router1:

router rip

--network 192.200.10.0

--network 192.20.10.0

--neihbor 192.200.10.2

二、IGRP 协 议

1.有关命令

全局设置

指定使用IGRP 协议 router igrp

autonomous-system

路由设置

指定与该路由器相连的网络 network network

2.举 例

498)this.style.width=498;” alt=“” />

Router1:

-- router igrp 200

-- network 192.200.10.0

-- network 192.20.10.0

三、OSPF 协 议

1.有关命令

全局设置

指定使用OSPF 协议 router ospf process-id

路由设置

指定与该路由器相连的网络network

address wildcard-mask area area-id

指定与该路由器相邻的节点地址neighbor ip-address

2.举例

498)this.style.width=498;“ alt=”“ />

Router1:

-- router ospf 200

-- network 192.200.10.0.0.0.0.255 area1

-- network 192.200.20.0.0.0.0.255 area2

-- netghbor 192.200.10.2

-- neighbor 192.200.20.2

四、IPX 协议设置

IPX 协议与IP 协议是两种不同的网络层协议,它们的路由协议也不一样,IPX 的路由协议不象IP的路由协议那样丰富,所以设置起来比较简单,

路由协议设置

但IPX协议在以太网上运行时必须指定封装形式。

1.有关命令

全局设置

启动IPX 路由 ipx routing

端口设置

设置IPX 网络及以太网封装形式 ipx network network [encapsulation encapsulation-type]

2.举例

498)this.style.width=498;” alt=“” />

Router1:

-- ipx routing

-- interface ethernet0

-- ipx network 1a encapsulation sap

-- interface serial0

-- ipx network 3a00

篇6:有类路由与无类路由选择协议

IP路由选择协议可分为有类路由和无类路由选择协议,有类路由选择协议发送的路由选择更新不包含子网掩码信息,如RIPv1;无类路由选择协议发送的路由选择更新包含子网掩码信息,如RIPv2,EIGRP,OSPF,IS-IS和BPG。

1、有类路由选择协议

在最初开发有类协议时,使用的网络与现在的网络有天壤之别。在那时候,modem的最高速度为300bit/s,WAN线路的最高速度为56bit/s,路由器的内存不超过640KB,而处理器的速度以KHz计,因此就要求路由选择更新必须足够小,且路由器也没有足够的资源来维护有关每个子网的最新信息,这就是有类路由协议出现的原因。

由于有类路由选择协议的更新中没有带子网掩码,因此分类路由器在发送或接收路由选择更新时,必须对更新中列出的网络使用的子网掩码作出假设,即假设各个子网所使用的子网掩码,这种假设是基于IP地址类的。

发送更新时,如果更新分组涉及的子网与发送接口的IP地址位于同一个分类网络中,路由器将发送完整的子网信息;如果更新分组涉及的子网与发送接口的IP地址不属于同一个分类网络中(即子网的更新通过属于另一个网络的接口发送出去),该路由器就假设远程路由器将根据IP地址类来使用相应的默认子网掩码,因此路由器不发送完整的子网信息,而是该子网所属的分类网络地址信息(主网络地址),这也被称为在网络边界自动进行汇总。

接收更新时,路由器也要对更新分组中的子网的子网掩码作出假设。如果更新分组中涉及的子网与接收接口的IP地址位于同一个分类网络中,路由器将使用接收接口的子网掩码作为该更新子网的子网掩码;如果不属于同一分类网络,那么路由器将对更新的网络应用默认的子网掩码。

在非连续网络中,有类路由选择协议在主网络边界自动进行了路由汇总,这就意味着,子网不会被通告给其他主网络,非连续子网之间相互不可见。非连续子网指的是被另一个主网络隔开的属于同一个主网络的子网。由于RIPv1不能跨越另一主网络通告其他的子网,当在跨越主网络通告其他子网时,路由器就自动进行汇总,因此,在非连续的网络中,可以使用RIPv2,OSPF,IS-IS或EIGRP路由选择协议,并禁用自动汇总功能来解决,因为这些路由选择协议属无类的路由选择协议,在发送更新时携带了子网掩码信息,

在使用了有类路由选择协议的存根网络中,最终网关路由器(如只有一个通往ISP网络的路由器)可能要使用默认路由或超网路由来转发未知子网的数据包,而与这些未知子网位于同一个主网络中的其他一些子网对路由器来说时已知的,则需要需用ip classless命令。

如果没有应用ip classless命令,路由选择表本身默认将以有类方式进行路由选择决策,即使没有使用路由选择协议也将如此。例如,路由器没有运行路由选择协议,而只是配置了静态路由,则使用默认路由仍将无法到达已知主网络的其他子网,除非配置了ip classless命令。

在12.0或更晚的cisco IOS版本中,默认将启用命令ip classless。

2、无类路由选择协议

无类路由选择协议应算时第2代的路由选择协议了,设计开发此类协议旨在克服早期分类路由选择协议的一些缺点,如:在分类路由网络环境中,在路由更新中不携带子网掩码信息,导致在同一个主网络中的所有子网必须相同的子网掩码,这就限制了VLSM的使用,导致IP地址的严重浪费。

由于无类路由网络环境中交换了子网掩码信息,则路由器的路由表中可能包含同一个主网络的多个子网路由信息,因此在转发数据包时使用了前缀最长的匹配原则来选择路由。

在有类路由网络环境中,需要在主网络边界自动进行汇总,这也限制了非连续子网的应用,而无类路由选择环境中,可手工控制路由汇总方式,通常可以在任何位置进行汇总。

默认情况下,RIPv2和EIGRP与分类路由选择协议一样,自动在分类网络边界进行汇总,这主要是让这些路由向后与它们的前任RIPv1和IGRP协议兼容。但RIPv2和EIGRP能允许路由器配置命令no auto-summary来手动关闭自动汇总功能,使得非连续子网能正常运行。但运行OSPF或IS-IS时,无需使用该命令,因为默认时它们不自动汇总网络。

作者: graynight

篇7:选择OSPF路由协议的最佳方式

目前OSPF路由协议的应用非常广泛,相信随着通信行业的发展,OSPF路由协议也会更加的完善稳定,给用户带来良好的网络环境,一种弥补OSPF路由协议占用CPU和内存资源的方法是将网络分成独立的层次域,称为区域(Area)。

每个路由器仅与它们自己区域内的其它路由器交换LSA。Area0被作为主干区域,所有区域必须与Area0相邻接。在ABR(区域边界路由器,AreaBorderRouter)上定义了两个区域之间的边界。ABR与Area0和另一个非主干区域至少分别有一个接口。最优设计的OSPF网络包含通过VLSM与每个区域邻接的主干网络。这使得在路由表的一个条目中描述多个网络成为可能。

虽然OSPF路由协议是RIP协议强大的替代品,但是它执行时需要更多的路由器资源。如果网络中正在运转的是RIP协议,并且没有发生任何问题,仍然可以继续使用。但是如果想在网络中利用基于标准协议的多余链路,OSPF路由协议是更好的选择,

增强内部网关路由协议

在Cisco公司的产品中,EIGRP(EnhancedInteriorGatewayRontingProtocol)协议具有一些优势。最重要的是它能迅速广播链路状态的变化。但EIGRP协议的最大缺点是没有标准化。

与OSPF路由协议一样,EIGRP路由器寻找它们的邻接路由器并交换“hello”数据包。EIGRP协议每隔5秒传送“hello”数据包。如果失败3次,邻接路由器则被认为是宕机状态,替代的路径将被使用。

当本地路由器的链路状态发生变化,在新信息基础上它将重新计算拓扑结构表。OSPF路由协议此时将立即向网络中的每个路由器广播链路状态的变化,而EIGRP协议将仅仅涉及到被这些变化直接影响的路由器。这使带宽和CPU资源的利用效率更高。同时,由于EIGRP协议使用了不到50%的带宽,使得在低带宽WAN链路上具有很大优势。EIGRP协议的另一个优势是它支持Novell/IPX和AppleTalk环境。如果网络正在运行的是IGRP协议,那么转换到EIGRP协议比转换到OSPF路由协议要容易的多。

篇8:路由选择协议、RIP和IGRP概述网络知识

本节是对本章实验的准备,主要包括对路由选择协议以及RIP和IGRP这两种距离矢量路由选择协议的简要总结, 1.路由选择协议及其分类 IP路由选择协议用有效的、无循环的路由信息填充路由选择表(路由表),从而为数据包在 网络 之间传递提供可靠的路径信息。路由选

本节是对本章实验的准备,主要包括对路由选择协议以及RIP和IGRP这两种距离矢量路由选择协议的简要总结。

1.路由选择协议及其分类

IP路由选择协议用有效的、无循环的路由信息填充路由选择表(路由表),从而为数据包在网络之间传递提供可靠的路径信息。路由选择协议又分为距离矢量、链路状态和平衡混合3种。

距离矢量(Distance Vector)路由协议计算网络中所有链路的矢量和距离并以此为依据确认最佳路径。使用距离矢量路由协议的路由器定期向其相邻的路由器发送全部或部分路由表。典型的距离矢量路由协议是RIP和IGRP。

链路状态(Link State)路由协议使用为每个路由器创建的拓扑数据库来创建路由表,每个路由器通过此数据库建立一个整个网络的拓扑图。在拓扑图的基础上通过相应的路由算法计算出通往各目标网段的最佳路径,并最终形成路由表。典型的链路状态路由协议是OSPF(OpenShortest Path First,开放最短路径优先)

平衡混合(Balanced Hybrid)路由协议结合了链路状态和距离矢量两种协议的优点,此类协议的代表是EIGRP,即增强型内部网关路由协议,

2.RIP协议

RIP(路由选择信息协议)是距离矢量路由选择协议的一种,它具有以下的特点:

选用跳数作为惟一的路由选择度量标准;

跳数允许的最大值是15,如果路由器收到了一个跳数值为16的路由更新信息,则其

目标网络是不可达的;

缺省情况下,每305广播一次路由更新数据;

RIP版本1不支持可变长子网掩码 (VLSM)和不连续的于网;

RIP版本2支持VLSM和不连续的子网,并且使用组播地址发送路面更新信息。

3.IGRP协议

IGRP(内部网关路由协议)是Cisco公司开发的一种路由选择协议。作为另一种距离矢量路由选择协议,IGRP具有以下的特点:

IGRP的度量值是由带宽、延时、负载、可靠性和最大传输单元通过加权计算而来的:

缺省情况下,IGRP路由更新信息每90s发送一次;

能够变通地处理不确定的、复杂的拓扑结构;

不支持VLSM和不连续的子网。

原文转自:www.ltesting.net

篇9:全面讲解选择RIP路由协议的要点

随着我国路由行业的发展,也使得路由协议变得更加完善,这里我们主要讲解了选择RIP路由协议需要注意的要点,RIP路由协议的另一个基本问题是,当选择路径时它忽略了连接速度问题,例如,如果一条由所有快速以太网连接组成的路径比包含一个10Mbps以太网连接的路径远一个跳数,具有较慢10Mbps以太网连接的路径将被选定作为最佳路径。

RIP路由协议的原始版本不能应用VLSM,因此不能分割地址空间以最大效率地应用有限的IP地址。RIP路由协议通过引入子网屏蔽与每一路由广播信息一起使用实现了这个功能。RIP路由协议还应该能防止数据包进入循环,或落入路由选择循环,这是由于多余连接影响网络的问题。RIP路由协议假定如果从网络的一个终端到另一个终端的路由跳超过15个,那么一定牵涉到了循环。因此当一个路径达到16跳,将被认为是达不到的。显然,这限制了RIP路由协议只能在网络上的使用。

RIP的最大问题涉及到具有多余路径的较大网络。如果网络没有多余的路径,RIP路由协议将很好地工作,它是被几乎每个支持路径选择的厂商实施的Internet标准。RIP协议适用于多数服务器操作系统,它的配置和障碍修复非常容易,

对于规模较大的网络,或具有多余路径的网络,应该考虑使用其它路由协议。

OSPF2

OSPF2是类似RIP路由协议的Internet标准,可以弥补RIP路由协议的缺点。1991年在RFC1247中它被第一次标准化;最新的版本是在RFC2328中。但是与RIP路由协议不同,OSPF是一套链路状态RIP路由协议,这意味着路由选择的变化基于网络中路由器物理连接的状态与速度,并且变化被立即广播到网络中的每一个路由器。

当一个OSPF路由器第一次被激活,它使用OSPF的“hello协议”来发现与它连接的邻节点,然后用LSA(链路状态广播信息)等和这些路由器交换链路状态信息。每个路由器都创建了由每个接口、对应邻节点和接口速度组成的数据库。每个路由器从邻接路由器收到的LSA被继续向各自的邻接路由器传递,直到网络中的每个路由器收到了所有其它路由器的LSA。

链路状态数据库不同于路由表,根据数据库中的信息,每个路由器计算到网络的每一目标的一条路径,创建以它为根的路由拓扑结构树,其中包含了形成路由表基础的最短路径优先树(SPF树)。LSA每30分钟被交换一次,除非网络拓扑结构有变化。例如,如果接口变化,信息立刻通过网络广播;如果有多余路径,收敛将重新计算SPF树。计算SPF树所需的时间取决于网络规模的大小。因为这些计算,路由器运行OSPF需要占用更多CPU资源。

篇10:各类路由协议配置方法

单一种类的路由协议配置我们虽然有了不少的讲解,那么对不同种类的的路由协议,所进行的配置也是不同的,这里我们来归纳一下。这样大家可以进行一下比较学习。我们都明白路由器的功能主如果寻址和转发寻址是通过路由算来完成的路由算法将搜集到的不同信息添到路由表中而转发则是通过路由表进行路由器之间相互通信更新维护路由表而路由器之间相互通信就触及到了路由协议?

路由协议主要分静态路由和动态路由

静态路由:由网络管理员手工输入?

动态路由:通过路由选择协议自动顺应网络拓扑或流量的变化?

路由协议配置之静态路由的配置

Router(config)iproute+非直连网段(通俗的说就是除了你的S口和E口)+子网掩码+下一跳地址

Router(config)

#exit

动态路由按照是否在一个自治系统内运用又可以分为内部网关协议(IGP)和外部网关协议(BGP),常见的内部网关协议有RIPOSPF等外部网关协议有BGPBGP-4这里主要说下内部网关协议,RIP(RoutingInformationprotocol)是一种距离矢量选择路由协议由于它的简朴可靠便于配置所以运用比较广泛但是由于它最多支持的跳数为15,16为不可达所以只合适小型的网络而且它每隔30S一次的路由信息广播也是造成网络广播风暴的重要原因之一?

路由协议配置之RIP的配置

Router(config)

#routerrip

Router(config-router)

#networknetwork-number

network_number为路由器的直连网段

IGRP(InteroorGatewayRoutingProtocol)IGRP由于突破了15跳的限制,成为了当时大型CISCO网络的首选协议RIP与IGRP的工作机制,均是从所有配置接口上定期发出路由更新?但是,RIP是以跳数为度量单位;IGRP以多种因素来建立路由最佳路径; 带宽(Bandwidth),延迟(Delay),可靠性(Reliability),负载(LOAD)等因素但是它的缺点就是不支持VLSM和不连续的子网?

路由协议配置之IGRP的配置

router(config)

#routerigrp100(100为自治系统号)

router(config-router)

#networknetwork-number

router(config-router)

#exit

注意:

1)编号的有效范围为1-65535,编号用确定一组区域编号相同的路由器和接口

2)不同的编号的路由器不参与路由更新

EIGRP(Enhanced Interoor Gateway Routing Protocol)

EIGRP是最典型的平衡混合路由选择协议,它融合了距离矢量和链路状态两种路由选择协议的长处,运用散射更新算法,可完成很高的路由性能?EIGRP特点是采用不定期更新,即只在路由器改变计量标准或拓扑出现变化时发送部分更新路由?支持可变长子网掩码VSLM,具有相同的自治系统号的 EIGRP和IGRP之间,可无缝交换路由信息?

路由协议配置之EIGRP的配置和IGRP的大致相同

router(config)

#routereigrp(100为自治系统号)

router(config-router)

#network

network-numberrouter(config-router)

#exit

路由协议配置之OSPF

OSPF是一种链路状态路由选择协议所谓链路状态是指路由器接口的状态,如UP,DOWN,IP及网络类型等链路状态信息通过链路状态公告 (LSA)发布到网上的每台路由器每台路由器通过LSA信息建立一个关于网络的拓扑数据库可以在大型网络中运用而且它支持VLSM运用带宽作为度量值收敛速度快通过分区完成高效的网络管理?

路由协议配置之OSPF的配置

router(config)

#routerospf3(3为进程号)

router(config-router)

#network+直连网段+直连网段+子网掩码的反码(反码就是通配符)+区域号(多个路由器配置时区域号必须相同)

篇11:路由器原理及路由协议

本文通过阐述TCP/IP网络中路由器的基本工作原理,介绍了IP路由器的几大功能,给出了静态路由协议和动态路由协议,以及内部网关协议和外部网关协议的概念,同时简要介绍了目前最常见的RIP、OSPF、BGP和BGP-4这几种路由协议,然后描述了路由算法的设计目标和种类,着重介绍了链路状态法和距离向量法,在文章的最后,扼要讲述了新一代路由器的特征。

——近十年来,随着计算机网络规模的不断扩大,大型互联网络(如Internet)的迅猛发展,路由技术在网络技术中已逐渐成为关键部分,路由器也随之成为最重要的网络设备。用户的需求推动着路由技术的发展和路由器的普及,人们已经不满足于仅在本地网络上共享信息,而希望最大限度地利用全球各个地区、各种类型的网络资源。而在目前的情况下,任何一个有一定规模的计算机网络(如企业网、校园网、智能大厦等),无论采用的是快速以大网技术、FDDI技术,还是ATM技术,都离不开路由器,否则就无法正常运作和管理,

1网络互连

——把自己的网络同其它的网络互连起来,从网络中获取更多的信息和向网络发布自己的消息,是网络互连的最主要的动力。网络的互连有多种方式,其中使用最多的是网桥互连和路由器互连。

1.1网桥互连的网络

——网桥工作在OSI模型中的第二层,即链路层。完成数据帧(frame)的转发,主要目的是在连接的网络间提供透明的通信。网桥的转发是依据数据帧中的源地址和目的地址来判断一个帧是否应转发和转发到哪个端口。帧中的地址称为“

篇12:路由协议故障处理

1 RIP综述

RIP(Routing Information Protocol)是基于D-V算法的内部动态路由协议,它是第一个为所有主要厂商支持的标准IP选路协议,目前已成为路由器、主机路由信息传递的标准之一,适应于大多数的校园网和使用速率变化不大的连续的地区性网络。对于更复杂的环境,一般不应使用RIP。

RIP1作为距离矢量路由协议,具有与D-V算法有关的所有限制,如慢收敛和易于产生路由环路和广播更新占用带宽过多等;RIP1作为一个有类别路由协议,更新消息中是不携带子网掩码,这意味着它在主网边界上自动聚合,不支持VLSM和CIDR;同样,RIP1作为一个古老协议,不提供认证功能,这可能会产生潜在的危险性。总之,简单性是RIP1广泛使用的原因之一,但简单性带来的一些问题,也是RIP故障处理中必须关注的。

RIP在不断地发展完善过程中,又出现了第二个版本:RIP2。与RIP1最大的不同是RIP2为一个无类别路由协议,其更新消息中携带子网掩码,它支持VLSM、CIDR、认证和多播。目前这两个版本都在广泛应用,两者之间的差别导致的问题在RIP故障处理时需要特别注意。

我们还将关注RIP配置和与其他厂商互通中的一些问题。

2 RIP配置的常见问题

2.1 配置的两台路由器间不能用RIP互通

如果配置的两台路由器间不能用RIP互通,在物理连接没有问题的时候,就要考虑是否是下面原因:

(1)在Quidway系列路由器之间不通:

l可能是RIP没有启动, 也可能相应的网段没有使能。

这里需要注意的是在用使用network命令时要按地址类别配置相应的网段。例如接口地址137.11.1.1,由于137.11.1.1是B类地址,如果设置“network 137.0.0.0”,报文将不会被对端接受,此时配置成“network 137.11.0.0” 就可以正确接收了。

l另一个可能原因是接口上把RIP给关掉了。

这是要查看一下配置信息,看看接口上是不是设置了undo rip work 或undo rip input或undo rip output命令。

l还有一个可能原因是子网掩码的不匹配。

在RIP1这样的有类别路由协议中,主网中的每一路由器和主机都应有相同的子网掩码。如果子网掩码长度不匹配,信息包就不能正确路由。

2.2 在Quidway系列路由器与其他厂商路由器之间不通:

l请先照(1)进行相应检查

l然后考虑是不是版本设置不同。Quidway系列路由器缺省情况下,RIP可以接收RIP1和RIP2广播报文,但是只能发送RIP1报文。如果Quidway系列路由器之间互通时,一个配置为RIP1,一个配置为RIP2, 是可以正确的收发报文的; 但是如果Quidway系列路由器和其他厂商路由器互通时, Quidway系列路由器配置了RIP2,而其他厂商路由器还是RIP1,就会有可能出现问题。

2.3 RIP1与RIP2的区别引起的问题

由于RIP2对RIP1有许多功能上的扩充,它们之间的混淆也会带来一些问题。

(1)配了验证,却没有起作用:

由于RIP-1不支持验证,如果在启动RIP后就配验证,实际上是不起作用的(缺省条件下时RIP-1),只有在两端的接口上配了rip version 2 后验证能生效。

(2)子网掩码没有配上

在取消自动聚合的情况下, 如果发送的报文中有一条B类地址的路由,但是 配了24位掩码,结果发现对端路由表上的出现的是16位掩码,如:

137.11.1.0/24, 得到137.11.0.0/16 , 就是由于没有配ip rip version 2, 因为RIP-1不支持子网掩码,只能按地址类别聚合发路由,137.11.1.0是B类地址就会按类聚合为137.11.0.0发出去, RIP2支持子网掩码, 这样配置的子网掩码就能发过去了。

相关的问题还有对于两条在同一主网中的路由,如10.1.0.0和10.110.0.0,在RIP1下不做区别都聚合成10.0.0.0往外发。RIP-2下都配16位掩码就可以区别发出。

(3)自动聚合引起的问题

RIP1永远使用聚合 ,且RIP的聚合是按照类进行的,RIP2 缺省也使用聚合,但是可以在协议模式下取消。需要注意的有两点:

l取消自动聚合只对RIP2接口有效.

l自动聚合是为了减少网络中路由量,如果没有特殊原因,一般不要取消,

2.4 RIP性能问题

1. 仅以hop作为metric的问题

RIP仅仅是以跳数作为选择路由的度量值,完全不考虑不同路径带宽的影响。这在某些情况下,我们会发现报文到达目的地所经过的路由并非最佳路由。例如:从源到目的的报文可能从hop为1的ISDN链路(该链路其真实作用是用于备份)转发,而不走带宽高达10Mbps的两个局域网链路,仅仅是因为其hop值为2。

此时的解决办法就是重新设计网络或使用其他具有更大灵活性的路由协议(如:OSPF)。

2. 广播更新问题

RIP缺省设置是每隔30秒进行广播交换整个路由表信息,这将大量消耗网络带宽,尤其是在广域网环境中,可能出现严重性能问题。

当由于RIP广播而产生网络性能问题时,可以考虑使用“neighbor”命令配置RIP报文的定点传送。一方面,定点传送可用于在非广播网络(如帧中继网络)支持RIP。另一方面,定点传送用于以太网环境可以显著减少其上的网络流量。

3. 慢收敛问题

RIP是一个距离矢量协议,同时由于Garbage定时器的设置,可能会产生下面这个有趣的现象:有时候配置了一个命令却发现没起作用, 这可能会使我们认为是配置出错或者其他故障,其实是由于RIP慢收敛的原因需要一段延时,不要着急,先等几分钟,也许你什么都没做就可以看到一切都正常了。

说明:

Garbage 时间:当路由被标记为无效之后,此时路由器并不立即删除此路由,而是保持一段时间,只有在经过这段时间之后,路由器才真正将此路由从路由表中彻底删除。这段时间就称为Garbage时间。Garbage时间有助于增加网络的稳定性,但付出的代价是路由再次可用的时间推迟,即收敛更缓慢。

2.5 其他相关问题

1. 帧中继中的水平分割问题:

在帧中继,X25等NBMA网络上运行的时候,要取消水平分割,在接口模式下配置no ip rip split,如果使用水平分割,使用同一个物理接口下的逻辑接口之间就不能交换路由信息了。

2. 验证问题:

配置验证时,在配置了验证类型,没有配验证字时是不显示验证信息的,这时候验证也不起作用。

3. 地址借用问题:

地址借用必须两端同时借用,如果只有一端借用,会由于两端不在同一网段而导致不能互通,如果两端都借用就可以取消对源地址的检查。

4.2.6 RIP故障处理的一般步骤

在网络上测定IP连通性的最常用方法是Ping命令。从源点向目的端发送Ping命令成功的话,意味着所有物理层、数据链路层、网络层功能均正常运转。而当IP连通失败,我们首先要检查的是源到目标间所有物理连接是否正常、所有接口和线路协议是否运行。当物理层和数据链路层检查无误后,我们将排错重点转向网络层,假定此网络运行的路由协议为RIP,那么一般故障处理的步骤如下:

1. 检查从源到目的间的所有路由设备的路由表,看是否丢失路由表项。

例如:从源设备Ping目标设备161.7.9.10 没有响应,我们应当使用display ip routing-table命令依次检查从源到目的间所有路由表项为161.7.x.x (x.x根据使用的RIP版本不同可能会有所不同)的项。

2. 当发生路由表项丢失或其他问题,检查网络设备的RIP基本配置

(1) 使用display rip 命令察看RIP的各种参数设置。

l看RIP是否已经启动,相关的接口是否 已经使能,network命令设置的网段是否正确;

(2)用debug rip 系列命令看RIP的调试信息。

通过debug信息可以很明白的看出RIP报文是否被正确的收发;如果发送或接收有问题,也可以由debug信息中看到是什么原因而导致发送或接收报文失败。

3. 当RIP基本配置没有发现问题,请检查如下项目

应当考虑是否在接口上配置undo rip work命令,是否验证有问题,是否引入其他路由有问题,是否访问控制列表配置不正确等等。

l查看接口的display current-configuration信息可以看到RIP在接口模式下的配置信息是否正确。如该接口是否收发RIP报文,接口配置验证了么和验证是什么类型的,接口向外发送的报文是RIP-1还是RIP-2,是广播发送还是多播发送,接口在接收和发送路由时是否增加附加的路由权。

l查看display current-configuration信息可以看到RIP在协议模式下的配置信息是否正确。如是否引入其他协议的路由,如果引入,是已多大的路由权值引入的;是否对路由进行过滤和按什么规则过滤等。

篇13:解析网络通信中应用的动态路由选择协议

正文:

1. 计算机网络与路由简述

计算机网络(computer networks)是一个复杂的系统,其中存在许多技术,并且每种技术都与其它的技术一样起着不可替代的作用。许多国际组织和公司已经独立地设置了网络标准,而且彼此并不完全兼容。许多企业也已经推出了各种使用非常规的网络技术的产品和网络服务及其网络协议。计算机网络正变得越来越复杂,使其变得复杂的原因在于有多种网络技术以及各种网络协议被用来连接两个或者多个网络,这也就导致网络间有多种可能的连接方式。 比如,CISCO公司的路由器有其自主开发的动态路由协议IGRP和EIGRP,在广域网三层使用路由协议进行PACKET的分组交换路由的时候,目的路由器必须是使用的CISCO的路由器并且使用的是IGRP或者EIGRP路由选择协议,否者在路由器所连接的源和目的主机间不能进行通讯,因为IGRP和EIGRP是CISCO专有的路由协议。

2. 路由 / 路由协议 (Route / Routing Protocols)

2.1 路 由(Route)与 路由器 (Router)

路 由(Route) 将分组从网间网的一个地方转发到另一个地方的路径和过程。

路由器(Router) 用来网络互连计算机三层网络边缘设备,工作在OSI七层参考模型的网络层,为不同的网络之间报文寻径并存储转发。

2.2 路由选择协议(Routing Protocol)与可路由选择协议(routed protocols)

我们可以想象一种情况,如果整个武汉市只有一条公路,每辆汽车、每辆自行车、每个摩托车、每个行人都必须使用这唯一的一条公路。成千上万的汽车造成的交通通信量将在所有的地方造成拥塞。显然,需要将过多的交通量转移到不同的道路上,以将其分解为可以管理的部分。道路仍然需要交叉,这样人们仍然可以到达它们需要的任何目的地。多个交叉也可以提供富余的路由,这样可以避免巨大的交通延迟。通过在不同的路由上发送交通量,可以将交通拥塞压缩到最低限度。按照相同的方法,互连网络通信量需要分解,以避免网络通信量拥塞。引导互连网络通信量达到不同网络上的过程称为 路由选择(Routing)。

路由选择协议(Routing Protocols): 用于建立和维护路由表和按照达到数据包的目的地的最佳路径转发数据数据包的协议。比如,RIPV1,IGRP,OSPF等。

可路由选择协议(Routed protocols): 已选择路由协议由最终节点使用,以将数据和网络层地址分配信息一起封装在数据包中,目的是它可以通过互连网络进行中继。AppleTalk、IP和IPX都是已选择路由协议。注:当一个协议不支持网络层地址时,那么它就不是一个已路由协议。

路由器使用路由选择协议(routing protocols),以建立和维护路由表和按照达到数据包的目的地的最佳路径转发数据数据包。路由选择协议使路由器可以了解没有直接连接的网络的状态和与其他的路由器通信,以了解它们所关心的网络。这种通信不断进行,这样当互连网络中发生变化时,路由选择表中的信息可以随时更新。

2.3 路由选择算法(Algorith)和度量值(Metric)

路由选择算法就是路由选择协议用于决定达到目的网络的最佳路径的计算方法。路由选择算法越简单,则路由器将使用的处理能力就越小。这将减少路由器的日常费用。

路由选择算法的主要目的有3个:

• 准确性

• 低开销

• 快速收敛

度量值(Metric)是那些用于决定哪个路由是最优的值。根据所使用的路由选择协议,不同的因素可以决定一个路由的度,包括中继数量、链路速度、延迟(delay)、可靠性(capability)和负载(load)。

3.动态路由选择协议(Dynamic Routing Protocols)分类

动态路由是用某种算法寻找网络中的最佳路径和维护这张路由表的过程。

动态路由选择协议(Dynamic Routing Protocols)主要类型,如下:

距离矢量 (Distance Vector)

链路状态路由协议 (Link State)

3.1 距离矢量 (Distance Vector)

距离向量路由选择协议也称为Bellman Ford协议,

距离矢量路由协议主要有: RIPV1 , RIPV2 , IGRP。( RIP Routing Information Protocols , IGRP Interior Gateway Routing Protocols )距离矢量路由器定期向相邻的路由器发送它们的整个路由选择表(routing table)。距离相邻路由器在从相邻路由器接收到的信息的基础之上建立自己的路由选择信息表。无论使用何种类型的路由选择算法,互连网络上的所有路由器都需要时间以更新它们的路由选择表中的改动,这个过程称为聚合(convergence)。

距离向量路由选择是最古老也是最简单的一种路由选择协议算法。

距离矢量路由协议有一个严重的缺点,缓慢的收敛时间过程会造成路由回路(Routing Loop)。

解决路由回环方法:水平分割,定义最大跳数,路由毒杀,反转毒杀,抑制时间。

(注: 真正的距离矢量路由协议只有RIPV1和RIPV2,因为它们只用到了HOP跳数做为唯一的计算路由的方法。IGRP是CISCO公司专有的动态距离矢量路由协议,它使用到了跳数,但是主要决定路由因数是链路带宽,延迟,负载,最大传输单元,设备可靠性,能力等。)

3.2 链路状态路由协议 (Link State)

链路状态路由选择协议的目的是映射互连网络的拓扑结构,它是一种比距离矢量更复杂的路由选择协议,目前最流行的动态路由协议就是一种链路状态协议:OSPF 。OSPF的普及因为多协议标签交换(MPLS)的出现而更流行。

链路状态路由协议主要有: OSPF , IS IS(OSPF Open Shortest Path First , IS IS Intermediate System to Intermediate System)每个链路状态路由器提供关于它邻居的拓扑结构的信息。这包括:

• 路由器所连接的网段(链路)

• 那些链路的情况(状态)

链路状态路由器并不会广播包含在它们的路由表内的所有信息。链路状态路由协议只发送已经改动的路由的信息。链路状态路由器将向它们的邻居发送呼叫消息,这称为链路状态通告( LSA )。然后,邻居将LSA复制到它们的路由选择表中,并传递那个信息到网络的剩余部分。这个过程称为泛洪( flooding )。链路状态路由选择协议使用称为代价(cost)的方法,而不是使用跳(hop)。代价是自动或人工赋值的。链路状态路由选择协议的一个主要优点,即路由选择循环不可能形成,第2个优点,在链路状态互连网络中聚合是非常快。这些优点释放了路由器的资源,因为对不好的路由信息所花费的处理能力和带宽消耗都很少。

(注:EIGRP是一种混合动态路由协议,它综合了距离矢量和链路状态的两种路由方法。但是我们还是认为它属于一种高级距离矢量路由协议(HYBRID),这里就不在过多讨论了。EIGRP和IGRP都是CISCO公司专有的路由协议,只有运用在CISCO公司或者它授权的路由产品中才能使用。)

4. 内部和外部网关协议 (IGP和EGP)

在大型网络中,例如Internet,极小的互连网络分解为自治系统AS(Autonomous System)。每个AS被认为是一个自我管理的互连网络,一个自治系统内部运用相同的路有策略和路由算法。连接到Internet上的大型公司网络是自己拥有的自治系统,因为Internet上的其他主机并不由它来管理,而且它和Internet路由器并不共享内部路由选择信息。

路由选择协议是在一个自治系统内部为管理系统而开发的。它们也称为内部网关协议( IGP Interior Gateway Protocols )。内部网关协议也称为域内协议,因为它们工作在域内,而不是在域之间。这些协议认为,它们所处理的路由器是它们系统的一部分,并且可以自由交换路由选择信息。内部网关路由协议主要有: RIPv1 , RIPv2 , IGRP , EIGRP , OSPF , IS IS等。

有些路由选择协议也是为在一个较大的互连网络中连接自治系统而开发的。它们称为外部网关协议(EGP C Exterior Gateway Protocls)。外部网关协议就是所谓的域间协议,因为它们工作在域之间。这些协议认为,它们在系统的边缘上,而且仅仅交换必须的最少的信息,以维持对信息提供路由的能力。外部网关路由协议主要有: EGP 和 BGP4(Border Gateway protocol 4)。

总结

综述,路由选择协议是三层网络设备路由器转发分组寻找路由的动态算法和方法,一个好的动态路由算法不仅仅能增加网络可利用带宽,降低路由器CPU利用率,还将更好的转发分组增加网络的稳定性。动态路由协议的开发和不断完善是计算机广域网的一个重要部分。

TCP/IP详解之IP协议ARP协议和RARP协议

经常使用的十四个专业术语

有关路由选择协议的学习笔记

RFC1058路由信息协议(RoutingInformationProtocol)网络知识

网络边缘层设备简介

PPP 配置协议

《计算机网络》之网络层

浅谈Win98中一块网卡实现两个网段的通信

让网络更加安全的设置

用于加密机制的协议是

如何选择路由协议
《如何选择路由协议.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【如何选择路由协议(精选13篇)】相关文章:

网络基础知识总结2022-05-04

RIP协议理解2023-07-12

网络工程师应掌握的路由器协议知识2022-05-21

无线传感器网络中的关键技术2023-12-19

无线网络环境的无线局域网方案解析2022-09-15

Cisco路由配置语句Windows系统2023-05-20

arp协议书2022-11-21

Cisco GRE(隧道协议)2022-11-07

计算机网络专业面试自我介绍2023-03-07

《网络互联技术》教学反思2022-08-14

点击下载本文文档