数字控制可变增益放大器AD8370及其应用

时间:2023-04-20 08:10:23 其他范文 收藏本文 下载本文

数字控制可变增益放大器AD8370及其应用(共8篇)由网友“nx”投稿提供,以下是小编帮大家整理后的数字控制可变增益放大器AD8370及其应用,供大家参考借鉴,希望可以帮助到您。

数字控制可变增益放大器AD8370及其应用

篇1:数字控制可变增益放大器AD8370及其应用

1概述

AD8370是美国AD(ANALOGDEVICESINC)公司推出的一种低成本、数字控制的可变增益放大器,它具有高IP3和低噪声系数。由于其具有优良的失真性能和较宽的带宽,所以特别适合作为现代接收器设计中的增益控制器件应用。图1是AD8370的原理框图。

在宽输入动态范围应用中,AD8370可提供两种输入范围,分别对应于高增益模式和低增益模式。它内部的一个7位衰减器在提供28dB的衰减范围时,分辨率高于2dB,而在22dB的衰减范围时,分辨率高于1dB。AD8370的输入增益选择范围为17dB,可输出低失真的高电平。

AD8370可通过在PWUP引脚上输入合适的逻辑电平上电或者断电。当关闭电源时,AD8370的消耗电流小于5mA,并可提供优良的输入输出隔离。AD8370采用ADI高速XFCB方法,因而可在宽带情况下提供高频率和低失真特性,其典型静态电流为78mA。

AD8370可变增益放大采用的是密集的16脚TSSOP封装,工作温度范围为-40℃~+85℃。其主要特点如下:

●差动输入为200Ω;

●差动输出为100Ω;

●噪声系数为7dB(最大增益时);

●频带宽度可从低频到700MHz(-3dB);

●具有40dB的精确增益范围;

●带有串行7位接口;

●可通过管脚编程低、高增益,其中低增益范围为-11~17dB,高增益范围为+6~34dB;

●输入动态范围很宽;

●单电源可低至3V。

AD8370可应用于差动ADC驱动器、IF采样接收器、射频/中频放大中间级、SAW滤波器接口以及单端差动转换等领域。

2应用设计

2.1电路的基本连接方法

图2是AD8370的基本接线图。其中,供电电压范围为2.7V~5.5V,但应注意,为管脚VCCO和VC-CI供电时应使用一个0.1μF低感应系数的表面贴陶瓷电容构成的电源退耦电路,而且退耦电容应该尽可能地靠近AD8370。实际上,更有效的退耦方法是给供电电源并联一个100pF电容和一个磁珠。

AD8370主要是针对差动信号电路应用而设计的。由于差动信号设计能改善正常状态的谐波抑制,同时可以提高共模抑制能力,因此,必须使该器件的驱动和负载处于平衡状态,这就要求每个输入或者输出管脚的共模电阻值要平衡。如果使用非平衡电源供电,就会降低该器件的共模抑制比;而如果使用非平衡负载,则会增加谐波失真。总之,即使AD8370在不平衡状态下工作,仍具有比较良好的工作性能,但最优化设计还是尽可能将其处于平衡工作状态。

AD8370是一个性能优良的可变增益放大器,其增益控制传输功能对电压增益呈线性关系。在低增益端,增益斜率较陡,提供的增益控制功能也较粗;而在高增益端,由于dB采用阶梯式减小方式,因此可提供精确的增益调节能力。线性电压增益可以由下式给出:

Av=增益码×系数×?1+(前级放大器增益-1)×最高有效位?

其中,Av是线性增益,增益码指的是数字增益控制字减去最高有效位后的值,系数值为0.055744V/V,前级放大器增益为7.079458V/V,最高有效位指的是八位控制字的最高位。

2.2数字接口

AD8370的数字控制端口采用标准的TTL接口,当LTCH管脚保持低电平时,八位控制字以串行的方式写入,DATA管脚的数据在CLCK信号的每个上升沿读取,图3所示为数字控制接口时序,各个时间参数的典型最小值如表1所列。

表1串行编程时间参数

参数典型值单位脉冲宽度(TPW)10ns脉冲时钟周期(TCK)20ns数据建立时间(TDS)2ns数据使能建立时间(TES)2ns数据使能保持时间(TEH)2ns

2.3单端差动转换

AD8370主要用于差动信号接口,但实际上,也可以用来作为单端差动转换,方法简单易行。只要把没用到的输入管脚通过一个电容对地短接即可。图4所示是一种单端差动转换电路的.连接图。当使用单电源供电时,即使差动平衡条件不成立,其失真性能和增益精度还是能满足绝大多数应用的要求。

图5

3AD8370的评估板

利用AD8370的评估板可通过标准的50Ω测试装置来对其作快速测试,其电路原理如图5所示。图中,变压器T1和T2用于将50Ω源阻抗和负载阻抗转换成所要求的输入和输出电平。与该评估板相配套使用的是评估板软件,该软件的主要功能是从计算机给出串行增益控制信号。该评估板通过一条电缆与计算机的并口相连,使用时只要在控制软件中适当地调节滚动条就可以自动地实现AD8370的更新设置。

4小结

AD8370是美国AD公司推出的一种低成本、数字控制可变增益放大器,本文主要介绍了它的基本原理、电路连接、数字接口、单端差动转换及其评估板的使用方法。由于AD8370具有良好的工作性能,因而在通信、视频传输等领域将得到广泛应用。

篇2:数字控制可变增益放大器AD8370及其应用

数字控制可变增益放大器AD8370及其应用

摘要:AD8370是美国AD公司推出的一种低成本、数字控制的可变增益放大器,它具有高IP3和低噪声系数以及优良的失真性能和较宽的带宽,可以广泛应用于差分ADC驱动器、IF采样接收器、射频/中频放大中间级、SAW滤波器接口、单端差动转换器中。文章介绍了AD8370的基本原理及应用设计方法。

关键词:AD8370;数字控制;可变增益;放大器

1 概述

AD8370是美国AD(ANALOG DEVICES INC)公司推出的一种低成本、数字控制的可变增益放大器,它具有高IP3和低噪声系数。由于其具有优良的失真性能和较宽的带宽,所以特别适合作为现代接收器设计中的增益控制器件应用。图1是AD8370的原理框图。

在宽输入动态范围应用中,AD8370可提供两种输入范围,分别对应于高增益模式和低增益模式。它内部的一个7位衰减器在提供28dB的衰减范围时,分辨率高于2dB,而在22dB的衰减范围时,分辨率高于1dB。AD8370的输入增益选择范围为17dB,可输出低失真的高电平。

AD8370可通过在PWUP引脚上输入合适的逻辑电平上电或者断电。当关闭电源时,AD8370的'消耗电流小于5mA,并可提供优良的输入输出隔离。AD8370采用ADI 高速XFCB方法,因而可在宽带情况下提供高频率和低失真特性,其典型静态电流为78mA。

AD8370可变增益放大采用的是密集的16脚TSSOP封装,工作温度范围为-40℃~+85℃。其主要特点如下:

●差动输入为200Ω;

●差动输出为100Ω;

●噪声系数为7dB(最大增益时);

●频带宽度可从低频到700MHz(-3dB);

●具有40dB的精确增益范围;

●带有串行7位接口;

●可通过管脚编程低、高增益,其中低增益范围为-11~17dB,高增益范围为+6~34dB;

●输入动态范围很宽;

●单电源可低至3V。

AD8370可应用于差动ADC驱动器、IF采样接收器、射频/中频放大中间级、SAW滤波器接口以及单端差动转换等领域。

2 应用设计

2.1 电路的基本连接方法

[1] [2] [3]

篇3:宽带固定增益放大器THS4302特性及应用

宽带固定增益放大器THS4302特性及应用

摘要:THS4302是TI公司推出的新型固定增益放大器,具有2.4GHz的带宽和+5V/V的固定增益,其性能是现有同类产品的四倍,可为高速应用系统提供高速低噪声的模拟解决方案。文中介绍了THS4302的特点、工作原理及使用注意事项,并在此基础上给出了几种典型应用。

关键词:固定增益 放大器 A/D转换器?THS4302

1 引言

THS4302是美国德州仪器公司推出的新型固定增益放大器,它具有低失真、高斜率、低噪声和超过2GHz的增益带宽积。这些特性的结合使得模拟电路设计人员能够超越当前的性能限制,而以高于先前使用闭环所能达到的速率来处理模拟信号,从而优化放大器的设计方案。

THS4302具有2.4GHz的带宽及+5V/V的固定增益,其性能较现有同类器件提高了三倍,从而为高速应用领域提供了高速度、低噪声的模拟解决方案。

THS4302的推出使得无线基站、中继站以及其它基础设备能够提供更多的通道,从而可在更小空间中提供更高的带宽。由于THS4302具有高速、低失真特性,因而可在数字信号处理 (DSP)中驱动宽动态范围的高精度A/D(数/模)转换器。THS4302在100MHz频率输入时, 可驱动100Ω负载,其三阶输出截取点(OIP3)可高达+46dBm,这和以前的相同固定电压增益的运算放大器相比,具有更佳的线性增益变化及更低的功耗。

THS4302还采用了新型的带散热垫(PowerPAD)的RGT封装,其引脚定义如图1所示。各引脚下的功能说明如下:

1~4脚(VS-):电源负端;

5~8脚(VOUT):输出端;

9~12脚(VS+):电源正端;

13脚(NC):空脚;

14脚(VIN-):输入负端;

15脚(VIN+):输入正端;

16脚(PD):功率下拉端,低电平有效。

2 工作原理

2.1 宽带同相工作

THS4302是具有功耗下拉功能的固定增益电压反馈运算放大器,可在3V~5V的电源下工作。现以图2为例说明TH4302电路的典型性能。该电路采用同相放大结构,并采用双电源供电。图2中,VI端49.9Ω的并联电阻用来匹配测试仪器的源阻抗。VO端的50Ω电阻用于与测试仪器的50Ω负载阻抗相串联以提供100Ω负载。输出端总的100Ω负载与总共250Ω的反馈网络负载相结合可在THS4302的输出端呈现出71Ω的有效输出负载。图中的Rf、Rg为THS4302的内部反馈电阻和增益设定电阻,其取值分别为200Ω和50Ω。从图2可以看出,为了获得足够宽的频带响应,电路在正、负电源端均设计了严格的滤波网络。

2.2 单电源工作

当THS4302在单电源下工作时,输入信号和放大器必须具有适当的偏置以便能获得最大的输出电压摆幅。图3给出了一种有益于放大器单电源工作的配置方法。

为了获得最大的输出电压摆幅,输入信号和放大器应加Vs/2的电压。图中标示的2.5V偏置电压是在供电电压为5V时给出的。

另外,通过THS4302的功耗下拉引脚?PD?可以将静态电流从37mA降至800μA,这对于降低系统功耗是非常有用的`。当放大器的功耗下拉脚(PD)接到高电平(正电源)时,放大器工作在正常功耗模式。而当功耗下拉脚(PD)接负电平时,放大器关断,此时电流降至800μA。

功耗上拉或下拉门限电压与电源电压有关。当加到功耗下拉脚(PD)的电压高于使能电压时,器件被激活。而在低于下拉电压时,器件休眠。当所加电压在两门限电压之间时,放大器的工作状态不确定。

3 典型应用电路

3.1 用THS4302驱动A/D转换器

&nbs

p;  图4所示是用THS4302驱动高性能A/D转换器的实际电路。图中,THS4302输出的放大信号经过隔离电阻、AC耦合电容和低通滤波器后,再经宽带变压器即可转化为差分信号以驱动A/D转换器。对于不包含直流信息的应用,这种驱动ADCs的方法很有用。

RISO电阻在电路中起隔离作用,对它的精心设计可使电路获得最优的频率响应。

3.2 用THS4302驱动电容负载

对运算放大器来说,电容负载是一种最苛刻、也是很普通的负载条件。通常,电容负载为A/D转换器的输入,包括推荐用来改善A/D 线性度的外部附加电容。象THS4302这样的高速放大器,在输出端直接放置电容负载时,其稳定性很容易受到影响。而且,在放大器带有开环输出电阻时,电容负载在信号路径上引入的附加极性会减少相位余量,因此,在设计时,如果主要考虑频率响应的平坦度、脉冲响应的真实度、或者失真度,最简单有效的方法是在放大器输出和电容负载之间插入一个串联隔离电阻RISO以将反馈回路和电容负载隔离。

当THS4302的寄生电容负载超过2pF时,其频率响应性能降低。在实际应用时,长的PC板路径,非匹配电缆以及多个器件间的连接都很容易出现等效寄生电容负载超过2pF的情况。因此,为了获得最优的频率响应,RISO电阻的取值尤为重要,并应尽可能地将电阻RISO安装在靠近THS4302的输出端。图5所示为一组THS4302驱动不同电容负载时的频率响应曲线。

4 使用建议

THS4302具有2.4GHz的频带和5倍的电压增益,为了获得最优的AC性能,下面给出一些关于电源退耦和版图设计方面的建议。

(1)尽可能地将退耦电容放置在靠近电源输入端,以减小电源到地的电感。推荐使用与器件电源脚宽度差不多的电源线来连接退耦电容,并用3个或更多的孔将电容连接到地平面。

(2)将容值小的电容优先放置在最接近器件的位置。

(3)固态电源平面的四周到地平面之间要慎用高频退耦电容,以避免PCB出现自激。

(4)为了获得超过2 GHz的最佳传输特性,建议旁路电容的排列采用评估板上的排列方式。30.1Ω电阻与0.1μF电容串联可降低并联集总元件的谐振Q值。其中包括0.1μF和47pF电容和放大器的电源输入电容。

(5)将信号输入/输出脚到交流地的寄生电容应减到最小。

不管怎样,如果在I/O端使用传输线,匹配电阻应尽可能地接近器件。除非使用了传输线,否则,输出端和同相输入端的寄生电容会与负载和源阻抗一起,不自觉地对带宽产生限制。为了降低不必要的电容,地平面或电源平面应沿着信号I/O脚的周围断开,以形成一个窗口。

(6)将电源脚到高频0.1μF退耦电容器的距离减到最小?<0.25”?;

设计的地平面和电源平面不尽远离信号I/O脚,以避免使用窄的电源和地线,达到减小引脚和退耦电容间电感的目的。

(7) 仔细选择和放置外部元件以保护THS4302的高频性能。电阻应选择低电抗类型的。表贴电阻的工作特性较好,可进行高密度设计。此外,还应保持PC板上的连线尽可能地短。

(8)与其它宽带元件间应短线直接连接或使用板上传输线。 实际上,THS4302内部已经产生有2pF的寄生负载。因此,随着信号增益的增加,在没有隔离电阻的情况下,也可以驱动更大的寄生电容负载。也就是说,如果实际要求的走线较长,那么,也可以采用6dB固有信号损耗的双端传输线,当然还可以采用微带设计技术实现阻抗匹配传输线。

(9)像THS4302和THS4303这样的高速器件,一般不推荐使用插座。

(10)应充分利用PowerPAD来获得最佳的温度性能。

篇4:宽带固定增益放大器THS4302特性及应用

宽带固定增益放大器THS4302特性及应用

摘要:THS4302是TI公司推出的新型固定增益放大器,具有2.4GHz的带宽和+5V/V的固定增益,其性能是现有同类产品的四倍,可为高速应用系统提供高速低噪声的模拟解决方案。文中介绍了THS4302的特点、工作原理及使用注意事项,并在此基础上给出了几种典型应用。

关键词:固定增益 放大器 A/D转换器?THS4302

1 引言

THS4302是美国德州仪器公司推出的新型固定增益放大器,它具有低失真、高斜率、低噪声和超过2GHz的增益带宽积。这些特性的结合使得模拟电路设计人员能够超越当前的性能限制,而以高于先前使用闭环所能达到的速率来处理模拟信号,从而优化放大器的设计方案。

THS4302具有2.4GHz的带宽及+5V/V的固定增益,其性能较现有同类器件提高了三倍,从而为高速应用领域提供了高速度、低噪声的模拟解决方案。

THS4302的推出使得无线基站、中继站以及其它基础设备能够提供更多的通道,从而可在更小空间中提供更高的带宽。由于THS4302具有高速、低失真特性,因而可在数字信号处理 (DSP)中驱动宽动态范围的高精度A/D(数/模)转换器。THS4302在100MHz频率输入时, 可驱动100Ω负载,其三阶输出截取点(OIP3)可高达+46dBm,这和以前的相同固定电压增益的运算放大器相比,具有更佳的线性增益变化及更低的.功耗。

THS4302还采用了新型的带散热垫(PowerPAD)的RGT封装,其引脚定义如图1所示。各引脚下的功能说明如下:

1~4脚(VS-):电源负端;

5~8脚(VOUT):输出端;

9~12脚(VS+):电源正端;

13脚(NC):空脚;

14脚(VIN-):输入负端;

15脚(VIN+):输入正端;

16脚(PD):功率下拉端,低电平有效。

2 工作原理

2.1 宽带同相工作

THS4302是具有功耗下拉功能的固定增益电压反馈运算放大器,可在3V~5V的电源下工作。现以图2为例说明TH4302电路的典型

[1] [2] [3]

篇5:放大器带宽和增益指标

-09-17 14:13

开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。

单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电 压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输 入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增以后,可以计算出单位增益带宽,用以选择合适的运放。这用于 小信号处理中运放选型。

转换速率(也称为压摆率)SR:运放转换速率定义为,运放接成闭环条件下,将一个大信号(含阶第一文库网跃信号)输入到运放的输入端,从运放的输出 端测得运放的输出上升速率。由于在转换期间,运放的输入级处于开关状态,所以运放的反馈回路不起作用,也就是转换速率与闭环增益无关。转换速率对于大信号 处理是一个很重要的指标,对于一般运放转换速率SR10V/μs。目前的高速运放最高转换速率 SR达到6000V/μs。这用于大信号处理中运放选型。

全功率带宽BW:全功率带宽定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个恒幅正弦大信号输入到运放的输入端,使运放输出 幅度达到最大(允许一定失真)的信号频率。这个频率受到运放转换速率的限制。近似地,全功率带宽=转换速率/2πVop(Vop是运放的峰值输出幅度)。 全功率带宽是一个很重要的指标,用于大信号处理中运放选型。

建立时间:建立时间定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个阶跃大信号输入到运放的输入端,使运放输出由0增加到某 一给定值的所需要的时间。由于是阶跃大信号输入,输出信号达到给定值后会出现一定抖动,这个抖动时间称为稳定时间。稳定时间+上升时间=建立时间。对于不 同的`输出精度,稳定时间有较大差别,精度越高,稳定时间越长。建立时间是一个很重要的指标,用于大信号处理中运放选型。

等效输入噪声电压:等效输入噪声电压定义为,屏蔽良好、无信号输入的的运放,在其输出端产生的任何交流无规则的干扰电压。这个噪声电压折算到运放输入端时,就称为运放输入噪声电压(有时也用噪声电流表示)。对于宽带噪声,普通运放的输入噪声电压有效值约10~20μV。

差模输入阻抗(也称为输入阻抗):差模输入阻抗定义为,运放工作在线性区时,两输入端的电压变化量与对应的输入端电流变化量的比值。差模输 入阻抗包括输入电阻和输入电容,在低频时仅指输入电阻。一般产品也仅仅给出输入电阻。采用双极型晶体管做输入级的运放的输入电阻不大于10兆欧;场效应管

做输入级的运放的输入电阻一般大于109欧。

共模输入阻抗:共模输入阻抗定义为,运放工作在输入信号时(即运放两输入端输入同一个信号),共模输入电压的变化量与对应的输入电流变化量之比。在低频情况下,它表现为共模电阻。通常,运放的共模输入阻抗比差模输入阻抗高很多,典型值在108欧以上。

输出阻抗:输出阻抗定义为,运放工作在线性区时,在运放的输出端加信号电压,这个电压变化量与对应的电流变化量的比值。在低频时仅指运放的输出电阻。这个参数在开环测试。

篇6:具有最优共模抑制性能的可变增益仪用放大器AD8221及其应用

摘要:目前市场上大部分仪用放大器的共模抑制比在200Hz处就开始衰减,因而难以满足某些设计要求,而美国ADI公司推出的增益可编程高性能仪用放大器AD8221,则能提供工业上最高的共模抑制比。AD8221在其增益为1时,能够在频率为10kHz处保持大于80dB的共模抑制比,因而能很好的抑制宽带干扰和线性失真。文中介绍了AD8221的主要特点、工作原理以及引脚排列和功能,同时给出了AD8221的几种应用电路的设计方法。

篇7:具有最优共模抑制性能的可变增益仪用放大器AD8221及其应用

1概述

很多电子系统都需要对输入模拟信号进行检测。由于在其传感器接口电路中常采用差分输入方式,因而在系统的两个输入端难免会引入共模干扰信号,且该共模干扰电压一般都比较大,这种干扰信号在信号输入电路参数不对称时会转化为差模干扰并对测量系统产生影响,其影响的大小直接取决于共模干扰转换成差模干扰的大小。共模抑制比CM-RR是衡量测量系统对共模干扰抑制能力的参数,通常被定义为作用于系统的共模干扰信号与使该系统产生同样输出所需的差模信号之比。CMRR值越高,说明系统对共模干扰的抑制能力越强。因此,为了提高测量系统的抗干扰性能,在设计高精度电路时,应选用高共模抑制比的运放来构成系统的传感器接口电路。

理想运放的CMRR值应该是无穷大的,但大多数集成运算放大器的CMRR值实际上在80dB以上。目前市场上所有的仪用放大器的共模抑制比在200Hz处就开始衰减,因而不能满足某些系统在宽带干扰抑制方面的应用要求。

AD8221是美国ADI(AnalogDevicesInc)公司2003年推出的增益可编程高性能仪用放大器,该放大器的突出优点是其优异的共模抑制性能。当增益为1时,AD8221能够在各级保持最小80dB的共模抑制比,直至频率达到10kHz,因此,它能够抑制宽带共模干扰,从而可有效解决上述问题。AD8221主要有如下特点:

●具有优异的交流特性,共模抑制比高,当G为1V/V时,共模抑制比最小为80dB并将保持至10kHz;此外,AD8221还具有很宽的带宽,当G为1V/V时,-3dB处的频率为825kHz;

●具有优异的直流特性,最大输入失调电压为25μV;最大输入失调电压温漂为0.3μV/℃;最大失调电流为0.4nA。

●噪声低,当其工作频率为1kHz时,AD8221放大器的'最大输入电压噪声为8nV/√Hz;而在频率为0.1Hz~10Hz时,AD8221仅存在0.25μV的点对点输入噪声。

●增益可以编程设置,从而为用户提供了较大的使用灵活性。增益可由单一电阻进行控制且精度很高,其可编程范围为1~1000V/V;

●采用8引脚SOIC和MSOP两种封装,其中MSOP所占电路板空间是SOIC的一半,因而是多通道或节省空间应用的理想器件;

●既可单电源供电也可双电源供电,电源电压范围为±2.3V~±18V,特别适合±10V输入电压的应用情况;

●可以在-40℃~+125℃的温度范围内正常工作。

AD8221可广泛用于精确数据采集、生物医学信号分析和航空航天仪器系统中。由于它具有低失调电压、低失调电压温漂、低增益漂移、高增益精度等特点,因而非常适用于要求直流特性比较高的应用领域,例如桥式电路信号测量等。另外,它还可应用于生产过程控制、医疗仪器、应变仪和传感器接口等电路中。

2引脚排列

AD8221的突出特点是在高频时具有极高的共模抑制比。

AD8221可变增益仪用放大器采用8引脚SOIC和MSOP两种封装形式?图1所示是其引脚排列图。由于AD8221带有一个独特的插脚引线,因此,AD8221在10kHz、G=1时,具有80dB的共模抑制比;而在1kHz、G=1000时,则具有110dB的共模抑制比。该平衡引脚不仅降低了器件的寄生效应,同时还可简化电路板布局。

AD8221使用注意事项:高达4000V的静电电荷很容易聚积在人体和测试装备上,并且可能在无察觉的情况下放电。虽然AD8221配置了ESD保护电路,但由于高能量静电放电会对器件造成永久性破坏。因此,为了防止器件损坏或者性能下降,必须采取正确的ESD防护措施。

AD8221的极限参数如下:

●供电电压:±18V;

●功耗:200mW;

●输出短路时间:无限;

●共模输入电压:±Vs;

●差分输入电压:±Vs;

●工作温度范围:-40℃~+125℃;

●贮存温度范围:-65℃~+150℃。

超过这些极限值可能会给器件造成永久性破坏,如果接近这些绝对最大极限值且达到一定时间,也会影响器件的可靠性。

图3

3应用电路

3.1利用AD8221作精确应变测量

由于AD8221具有低漂移和高共模抑制比等优良特性,所以是桥式电路信号测量的理想器件,设计时可以将桥路信号直接与AD8221的输入端相连,具体电路如图2所示。

3.2±10V输入单端放大器与+5V差分ADC连接

在实际的设计应用中,很多应用设计方案都需要处理±10V的信号,而现在大多数的ADC和数字集成芯片则常常使用较低的单电源电压来进行供电。新型ADC在低供电电压时大多采用差分输入方式以获得较好的共模抑制比和较好的抗干扰性能,因此,具有±10V输入范围的单端仪用放大器与只有+5V差分输入范围ADC的级联就成为一个比较棘手的问题,为此,设计时必须对输入信号进行衰减和平移,图3给出了AD8221与模数转换器AD7723的连接方法。

该电路利用低噪声放大器OP27来设置AD8221的参考电压,仪用放大器的输出信号取自OUT引脚和REF引脚。两个1kΩ电阻与499Ω电阻构成了信号衰减电路,设计时可将±10V信号调节至+4V,而AD8022构成的双射级跟随器则可以用来驱动模数转换器AD7723。

该电路可进行信号平移和衰减,且噪声较低的原因是,电阻R1和R2产生的噪声对ADC的两个输入脚具有相同的效应,因而很容易抑制。而电阻R5产生的噪声只有1/3作用于系统,其大小可以忽略不计。衰减器的噪声经电阻R3和R4分压后也非常微弱。

该接口电路的另一个优点就是AD8221的建立时间短。因为放大器OP27可以使AD8221只传送一半摆幅,从而缩短了建立时间,这样,在ADC需要采集数据时,传送的位数就可以更多,从而提高了信号处理速度。

3.3基于AD8221的交流耦合仪用放大器

如果被测量的信号很微弱而很可能被放大器噪声所淹没,那么检测起来就很困难。图4给出了一个可以提高交流小信号测量精度的电路。该检测电路由AD8221构成高增益放大器来减小放大器的输入噪声(8nV/√Hz),这使得噪声相对于小信号来说更加微弱,从而,可以方便的测量出有用信号。而当信号频率小于f时,在放大器OP1177的作用下,AD8221的输出为0;而当信号频率超过f时,信号将通过AD8221放大输出。

4结束语

AD8221的突出特点是在高频带时具有极高的共模抑制比,它可以解决某些应用中需要抑制宽带共模干扰的问题,因而具有广阔的应用前景。

篇8:仪表放大器及应用

3.1 差分放大结构

MAX4198和MAX4199是精密、低功耗差分放大器,增益由工厂预置(见图3)。MAX4198具有+1V/V的增益,MAX4199具有+10V/V的增益。虽然电阻器件精确匹配,但其绝对值的变化范围是±25%。对于MAX4198,同相输入阻抗典型值是50kΩ,反相输入阻抗典型值是25kΩ。对于MAX4199,同相输入阻抗典型值是275kΩ, 反相输入阻抗典型值是25kΩ。内部运算放大器的共模输入电压范围为VEE~(Vcc-1.1V)。内部运放的输入不具备满摆幅特性,但MAX4198的内置电阻为一个分压器,它使得输入共模电压范围可超出电源摆幅。当VCC为5V时,MAX4198的输入范围可超出电源摆幅100mV,而且不会造成共模抑制比性能的下降或输出与输入的相位反转。而MAX4199输入共模电压范围可扩展到负电源电压以下的100mV~(Vcc-1V)。当R1=R2=R3=R4时,标准差分放大器的简化方程是Vo=Vb-Va;因此,四个电阻值的任何不匹配都会导致CMR的下降。

图4

虽然分离差分放大电路已被广泛使用,但它还有以下主要缺陷:

●输入电阻等于R1,相对较小;

●输入电阻通常存在较大差异;

●电阻一定要非常精确地匹配才能得到可接受的共模抑制比;

●较高频率时输入阻抗的差异可使CMR下降;

●信号源阻抗对CMR影响较大。

3.2 运放结构

MAX4194-MAX4197系列低功耗仪表放大器属于三运放拓扑,其拓扑结构如图4所示。它的输入级由两个运放组成,这两个运放可提供固定的差分增益和单位共模增益;输出级是常规的差分放大器,具有115dB的共模抑制比(G=+10V/V)。MAX4194的增益可由外部设定(+1V/V~+10,000V/V);MAX4195-MAX4197则由内部设置增益,固定增益分别为:+1V/V、+10V/V和+100V/V。放大器的共模电压输入范围是(VEE+0.2V)到(VCC-1.1V)。理想情况下,仪表放大器只对作用在IN+和IN-两个输入端的差分电压有响应,当两个输入端电压相同时,输出为VREF。IN+与IN-之间的差分电压将在增益设置电阻上产生相同的电压和相应电流(IG),该电流流过两个输入运放A1和A2的反馈电阻可产生的电压差为?

VOUT2-VOUT1=IG×(R1+RG+R1)

其中,VOUT1和VOUT2是A1和A2的输出电压,RG(内置或外接)是增益设置电阻,而R1是输入运放的反馈电阻。此时,IG将由下式决定:IG =(VIN+ - VIN-)/RG。仪表放大器输出电压(VOUT)由下式表示:

VOUT=(VIN+-VIN-)×(2R1/RG+1)

共模输入电压范围是电源电压和放大器输出电压的函数。当电源为VCC,REF端接VCC/2时,可以得到最大的输出信号摆幅,此时所产生的输出电压的摆幅为±VCC/2;若输出电压的摆幅没有达到最大值,则共模输入电压的范围还可相应增加。如果仪表放大器选择得不合理,共模输入电压范围可能会受到电源电压、增益和REF引脚电压的影响。其原因是各内部结点的电压会使放大器不再工作在线性区,而进入饱和区。图5是MAX4194的典型共模输入电压范围与输出电压摆幅间的关系(单位增益,单电源(VCC)为5V时,偏置参考电压VREF为VCC/2=+2.5V)。图中,A点到D点分别对应于输入放大器的满量程输入电压范围?VEE+0.2V? 到?VCC-1.1V?。其它点(B、C、E和F)则由输入放大器的输入电压范围减去产生相应输出所需要的差分输入幅度来决定。对于更高增益的配置,端点B、C、E和F上的共模电压范围还会增大,因为对于给定的输出电压,只需更小的差分输入电压即可。

增益设置电阻Rg是仪表放大器的关键部件,其温度系数对于放大器的总体性能有较大影响。内置Rg的仪表放大器具有较好的温度系数和温度一致性,易于设置增益,且输入阻抗较高,即便是在50Hz~60Hz的率下频仍有很好的共模抑制比CMR。但是,它的Vin、CMV、增益和VREF之间具有一定的制约关系。实际上,运算放大器或仪表放大器的选择依赖于具体的应用,在具体应用中,共模输入电压、电源电压、增益、REF引脚电压和传感器阻抗必须综合考察。利用放大器的REF引脚可以对输出失调电压进行微调;而对于加在REF引脚上的微调电压,则必须确保有一个较低的源阻抗,因为REF引脚上的附加阻抗将使CMR变低。

4 典型应用

4.1 高边监视器

最简单的高边监视器通常需要一个精密运算放大器和一些精密电阻,常见的高边测量都采用经典的差分放大器(用作增益放大和高边到地的电平转换,见图6)。虽然很多应用中也会使用分离电路,但其输入阻抗较低,而且电阻之间有较大差异。电阻的匹配必须非常精确才能获得可接受的共模抑制比,任一个电阻值存在0.01%的偏差都将使CMRR降低到86dB;如果偏差为0.1%,将使CMRR降低到66dB;而1%的偏差将使CMRR降低到46dB。选择仪表放大器结构时,有一个需要特别关注的参数,即在放大器任何输出摆幅下,输入共模电压的范围均应包括高边电压加上一个安全裕量。

4.2 电平转换器

此电路的工作原理可以这样来理解,将MAX4198看作一个三输入求和放大器(如图7所示),其电压传输函数为Vout=Vb-Va+Vshift,此式表明,输出由差分信号与REF输入电压的代数和所决定,VREF可为任意值,它不会使MAX4198的放大器输出饱和,MAX4194也适合作一个精密放大器,它可以很方便地配置成如下固定增益:-1、2或 ±1 。

4.3 应力测量

三运放拓扑的真正优势是其能够进行真正的差分测量(很高的CMR),同时又有非常高的输入阻抗,这些特点使其得到了广泛应用,特别是在信号源阻抗非常高的场合。为使信号源对地的漏电流达到最小,本例采用了一些防护技术,信号源电缆采用屏蔽电缆,并将其屏蔽隔离层接到(Vcm+ΔV/2)。图8给出了一个包括惠斯通电桥传感器的放大电路,对该电路的电桥阻抗可适当减小,并不会降低仪表放大器的CMR值。

高速ADC:防止前端冲突

提高PIC16C711单片机片内A/D分辨率的方法

车速里程表的工作原理及速比的计算方法论文

会议室设计说明

收音机的电子电工实习报告

计算机与网络用语中英翻译

机械组装实习报告

大学电工实训报告范文

浅析智能光网络技术及发展

电工基础实训报告

数字控制可变增益放大器AD8370及其应用
《数字控制可变增益放大器AD8370及其应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【数字控制可变增益放大器AD8370及其应用(共8篇)】相关文章:

机械手设计的论文2022-05-06

高性能软开关功率因数校正电路的设计2022-08-04

机械检测范文2022-07-27

机械手设计论文2022-06-24

网络即时通信的原理和实现论文2022-10-30

plc机械手实验报告2023-04-09

电子技术实习心得体会总结2023-08-22

电工电子实习总结2023-03-13

基于16位单片机的语音电子门锁系统2023-03-16

计算机与网络英语词汇(A2)2022-06-12