单基因病的名词解释

时间:2023-02-02 07:38:17 其他范文 收藏本文 下载本文

单基因病的名词解释(精选6篇)由网友“yy39321598”投稿提供,下面是小编为大家汇总后的单基因病的名词解释,仅供参考,欢迎大家阅读,希望可以帮助到有需要的朋友。

单基因病的名词解释

篇1:单基因遗传病的名词解释

单基因遗传病的名词解释

单基因遗传病是指受一对等位基因控制的遗传病,有6600多种,并且每年在以10-50种的速度递增,单基因遗传病已经对人类健康构成了较大的威胁。较常见的有红绿色盲、血友病、白化病等。

单基因遗传病的疾病特征

据有关医学研究证明,80年代统计,人类单基因病有3300多种,其遗传方式及再发风险符合Mandel规律。

常染色体显性遗传病位于常染色体上的两个等位基因中,如有一个突变,这个突变基因的异常效应就能显示发病。这类疾病已达17OO多种,如家族性多发性结肠息肉。多指、并指等。其遗传系谱特点是;遗传与性别无关,男女发病机会均等;患者双亲往往有一方为患者。若双亲无病,子女一般不发病;患者常为杂合型,苦与正常人婚配,其子女患病概率为50%;常见连续几代的遗传。 显性致病基因有时由于内外环境的影响,杂合子个体携带显性致病基因并不表达,即不完全外显。常染色体显性遗传病的外显率为60%-90%。

常染色体隐性遗传病致病基因为位于常染色体上的隐性基因,当隐性基因纯合时才能发病。即隐性遗传病患者,大多是由两个携带者所生的后代。已确定这类疾病约1200多种,如先天性聋哑、白化病、苯丙酮尿症。

杂合型隐性致病基因携带者,本身不表达相应的性状,但可将致病基因传给后代。

常染色体隐性遗传病的谱系特点:男女发病机会均等,发病与性别无关;双亲为无病携带者,子女发病概率为25%;常是越代遗传;近亲婚配时,子女中隐性遗传病患病率大为增高。如苯丙酮尿症在人群中随机婚配时,发病率为1:14500;表兄妹婚配则为1:1700。全身性白化病在人群中发病率为1:40000;表兄妹婚配则为1:3600。

性连锁遗传病多为隐性致病基因,位于X染色体上,男女发病率有显著差异如红绿色盲、血友病。已确定这类疾病近200种。致病基因一般是父传女,母传子,即所谓交叉遗传,患者可隔代出现,人群中男性患者远较女性患者为多。

单基因遗传病的疾病分类

常染色体显性遗传病

常染色体显性遗传病(autosomal dominant disorder)致病基因在常染色体上,等位基因之一突变,杂合状态下即可发病。致病基因可以是生殖细胞发生突变而新产生,也可以是由双亲任何一方遗传而来的。此种患者的子女发病的概率相同,均为1/2。此种患者的异常性状表达程度可不尽相同。在某些情况下,显性基因性状表达极其轻微,甚至临床不能查出,这种情况称为失显(non penetrance)。由于外显不完全,在家系分析时可见到中间一代人未患病的隔代遗传系谱,这种现象又称不规则外显(irreqular dominance)。还有一些常染色体显性遗传病,在病情表现上可有明显的轻重差异,纯合子患者病情严重,杂合子患者病情轻,这种情况称不完全外显(incomplete dominance)。常染色体显性遗传病常见者有Marfan综合征、Ehlers-Danlos综合征、先天性软骨发育不全、多囊肾、结节性硬化、Huntington舞蹈病、家族性高胆固醇血症、神经纤维瘤病、肠息肉病以及视网膜母细胞瘤等。[1]

⊙常见常染色体显性遗传病的病因和临床表现

1、多指(趾)、并指(趾)。临床表现:5指(趾)之外多生1~2指(趾),有的仅为一团软组织,无关节及韧带,也有的有骨组织。

2、珠蛋白生成障碍性贫血。病因:珠蛋白肽链合成不足或缺失。临床表现:贫血。

3、多发性家族性结肠息肉。病因:息肉大小不等,可有蒂,也可以是广底的,分布在下段结肠或全部结肠。临床表现:便血,常有腹痛、腹泻。

4、多囊肾。病因:肾实质形成大小不等的囊泡,多为双侧。临床表现:腹痛,血尿,腹部有肿块,高血压和肾功能衰竭。

5、先天性软骨发育不全。病因:长骨干骺端软骨细胞形成障碍,软骨内成骨变粗,影响骨的长度,但骨膜下成骨不受影响。临床表现:四肢粗短,躯干相对长,垂手不过髋关节,手指短粗,各指平齐,头围较大,前额前突出,马鞍型鼻梁,下颏前突,腰椎明显前突,臀部后凸。

6、先天性成骨发育不全。临床表现:以骨骼易折、巩膜蓝色、耳聋为主要特点。

7、视网膜母细胞瘤。临床表现:视力消失,瞳孔呈黄白色,发展可引起青光眼,眼球突出。

常染色体隐性遗传病

致病基因为隐性并且位于常染色体上,基因性状是隐性的,即只有纯合子时才显示病状。此种遗传病父母双方均为致病基因携带者,故多见于近亲婚配者的子女。子代有1/4的概率患病,子女患病概率均等。许多遗传代谢异常的疾病,属常染色体隐性遗传病。按照“一基因、一个酶”(onegeneoneenzyme)或“一个顺反子、一个多肽”(onecistrononepolypeptide)的概念,这些遗传代谢病的酶或蛋白分子的异常,来自各自编码基因的异常。

⊙常见常染色体隐性遗传病的病因和临床表现

1、白化病。病因:黑色素细胞缺乏酪氨酸酶,不能使酪氨酸变成黑色素。临床表现:毛发银白色或淡黄色,虹膜或脉络膜不含色素,因而虹膜和瞳孔呈蓝或浅红色,且畏光,部分有曲光不正、斜视及眼球震颤,少数患者智力低下。

2、苯丙酮尿症。肝脏中缺乏苯丙氨酸羟化酶,使苯丙氨酸不能氧化成酪氨酸,只能变成苯丙酮酸,大量苯丙氨酸及苯丙酮酸累积在血和脑积液中,并随尿排出,对婴儿神经系统造成不同程度的伤害,并抑制产生黑色素的酪氨酸酶,致使患儿皮肤毛发色素浅。临床表现:不同程度的智力低下,皮肤毛发色浅,尿有发霉臭味,发育迟缓。

3、半乳糖血症。病因:由于α1-磷酸半乳糖尿苷转移酶缺乏,使半乳糖代谢被阻断,而积聚在血、尿、组织内,对细胞有损害,主要侵害肝、肾、脑及晶状体。临床表现:婴儿出生数周后出现体重不增、呕吐、腹泻、腹水等症状,可出现低血糖性惊厥、白内障、智力低下等。

4、粘多糖病。病因:粘多糖类代谢的先天性障碍,各种组织细胞内积存大量的粘多糖,形成大泡。临床表现:出生时正常,6个月到2岁时开始发育迟缓,可有智力及语言落后,表情呆板,皮肤略厚,似粘液水肿,可有骨关节多处畸形。

5、先天性肾上腺皮质增生症。病因:肾上腺皮质合成过程中的各种酶缺乏。临床表现:女性患者男性化,严重者可呈两性畸形;男性患者外生殖器畸形,假性性早熟,可合并高血压、低血钾等症状。

X连锁显性遗传病

X连锁显性遗传病病种较少,有抗维生素D性佝偻病等。这类病女性发病率高,这是由于女性有两条X染色体,获得这一显性致病基因的概率高之故,但病情较男性轻。男性患者病情重,他的全部女儿都将患病。

⊙常见X伴性显性遗传病的病因和临床表现

1、抗维生素D佝偻病。病因:甲状腺功能不足,影响体内磷、血钙的代谢过程,致使血磷降低,且维生素D治疗效果不好。临床表现为:身材矮小,可伴佝偻病和骨质疏松症的各种表现。

2、家族性遗传性肾炎。病因:肾小管发育异常,集合管比常人分支少,呈囊状,远曲小管薄,但近曲小管变化轻。临床表现为:慢性进行性肾炎,反复发作性血尿,1/3~1/2患者伴神经性耳聋

X连锁隐性遗传病

致病基因在X染色体上,性状是隐性的,女性只是携带者,这类女性携带者与正常男性婚配,子代中的男性有1/2 是概率患病,女性不发病,但有1/2的概率是携带者。男性患者与正常女性婚配,子代中男性正常,女性都是携带者。因此X连锁隐性遗传在患病系中常表现为女性携带,男性患病。男性的致病基因只能随着X染色体传给女儿,不能传给儿子,称为交叉遗传。

⊙常见X伴性隐性遗传病的病因和临床表现

1、血友病A。病因:血浆中抗血友病球蛋白减少,AHG即第Ⅷ因子凝血时间延长。临床表现:轻微创伤即出血不止,不出血时与常人无异。

2、血友病B。病因:血浆中缺乏凝血酶成份PTC,即第Ⅸ因子。临床表现同血友病A。

3、色盲。临床表现:全色盲对所有颜色看成无色,红绿色盲为不能区别红色和绿色。

4、进行性肌营养不良。病因:为原发性横纹肌变性并进行性发展。临床表现:初为行走笨拙,易跌到,登梯及起立时有困难,从仰卧到起立必须先俯卧,双手撑地,再用两手扶小腿、大腿才能站起。进行性肌肉萎缩,但一般不累及面部及手部肌肉。

Y连锁遗传病

Y连锁遗传病的特点是男性传递给儿子,女性不发病。因Y染色体上主要有男性决定因子方面的基因,其他基因很少,故Y连锁遗传病极少见。已经知道的Y伴性遗传的性状或遗传病比较少,肯定的有H-Y抗原基因、外耳道多毛基因和睾丸决定因子基因等。

篇2:基因的名词解释

基因的名词解释

基因(遗传因子)是产生一条多肽链或功能RNA所需的全部核苷酸序列。基因支持着生命的基本构造和性能。储存着生命的种族、血型、孕育、生长、凋亡等过程的全部信息。环境和遗传的互相依赖,演绎着生命的繁衍、细胞分裂和蛋白质合成等重要生理过程。生物体的生、长、衰、病、老、死等一切生命现象都与基因有关。它也是决定生命健康的内在因素。因此,基因具有双重属性:物质性(存在方式)和信息性(根本属性)。

带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。组成简单生命最少要265到350个基因。(这涉及到了基因工作组的力量,人类的基因工作组与果蝇的基本相似)

基因的分类

结构基因

基因中编码RNA或蛋白质的碱基序列。

(1)原核生物结构基因:连续的,RNA合成不需要剪接加工;

(2)真核生物结构基因:由外显子(编码序列)和内含子(非编码序列)两部分组成。

非结构基因

结构基因两侧的一段不编码的DNA片段(即侧翼序列),参与基因表达调控。

(1)顺式作用元件:能影响基因表达,但不编码RNA和蛋白质的DNA序列;

其中包括:

启动子:RNA聚合酶特异性识别结合和启动转录的DNA序列。有方向性,位于转录起始位点上游。

上游启动子元件:TATA盒上游的一些特定DNA序列,反式作用因子可与这些元件结合,调控基因的转录效率。

反应元件:与被激活的信息分子受体结合,并能调控基因表达的特异DNA序列。

增强子:与反式作用因子结合,增强转录活性,在基因任意位置都有效,无方向性。

沉默子:基因表达负调控元件,与反式作用因子结合,抑制转录活性。

Poly(A)加尾信号:结构基因末端保守的AATAAA顺序及下游GT或T富含区,被多聚腺苷酸化特异因子识别,在mRNA 3′端加约200个A。

(2)反式作用因子:能识别和结合特定的顺式作用元件,并影响基因转录的一类蛋白质或RNA。

基因的特点

基因有两个特点,一是能忠实地复制自己,以保持生物的基本特征;二是在繁衍后代上,基因能够“突变”和变异,当受精卵或母体受到环境或遗传的影响,后代的基因组会发生有害缺陷或突变。绝大多数产生疾病,在特定的环境下有的会发生遗传。也称遗传病。在正常的条件下,生命会在遗传的基础上发生变异,这些变异是正常的变异。

含特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。除某些病毒的基因由核糖核酸(RNA)构成以外,多数生物的基因由脱氧核糖核酸(DNA)构成,并在染色体上作线状排列。基因一词通常指染色体基因。在真核生物中,由于染色体在细胞核内,所以又称为核基因。位于线粒体和叶绿体等细胞器中的基因则称为染色体外基因、核外基因或细胞质基因,也可以分别称为线粒体基因、质粒和叶绿体基因。

在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体称为染色体组或基因组,一个基因组中包含一整套基因。相应的全部细胞质基因构成一个细胞质基因组,其中包括线粒体基因组和叶绿体基因组等。原核生物的基因组是一个单纯的DNA或RNA分子,因此又称为基因带,通常也称为它的染色体。

基因在染色体上的位置称为座位,每个基因都有自己特定的座位。在同源染色体上占据相同座位的不同形态的基因都称为等位基因。在自然群体中往往有一种占多数的(因此常被视为正常的)等位基因,称为野生型基因;同一座位上的其他等位基因一般都直接或间接地由野生型基因通过突变产生,相对于野生型基因,称它们为突变型基因。在二倍体的细胞或个体内有两个同源染色体,所以每一个座位上有两个等位基因。如果这两个等位基因是相同的,那么就这个基因座位来讲,这种细胞或个体称为纯合体;如果这两个等位基因是不同的,就称为杂合体。在杂合体中,两个不同的等位基因往往只表现一个基因的性状,这个基因称为显性基因,另一个基因则称为隐性基因。在二倍体的生物群体中等位基因往往不止两个,两个以上的等位基因称为复等位基因。不过有一部分早期认为是属于复等位基因的基因,实际上并不是真正的等位,而是在功能上密切相关、在位置上又邻接的几个基因,所以把它们另称为拟等位基因。某些表型效应差异极少的复等位基因的存在很容易被忽视,通过特殊的遗传学分析可以分辨出存在于野生群体中的几个等位基因。这种从性状上难以区分的复等位基因称为同等位基因。许多编码同工酶的基因也是同等位基因。

属于同一染色体的基因构成一个连锁群(见连锁和交换)。基因在染色体上的位置一般并不反映它们在生理功能上的性质和关系,但它们的位置和排列也不完全是随机的。在细菌中编码同一生物合成途径中有关酶的一系列基因常排列在一起,构成一个操纵子(见基因调控);在人、果蝇和小鼠等不同的生物中,也常发现在作用上有关的几个基因排列在一起,构成一个基因复合体或基因簇或者称为一个拟等位基因系列或复合基因。

篇3:结构基因的名词解释

结构基因的名词解释

结构基因是编码蛋白质或RNA 的基因。细菌的结构基因一般成簇排列,多个结构基因受单一启动子共同控制,使整套基因或都表达或者都不表达。结构基因编码大量功能各异的蛋白质,其中有组成细胞和组织器官基本成分的结构蛋白、有催化活性的酶和各种调节蛋白等。

结构基因的简介

结构基因是一类编码蛋白质或RNA的基因.

在大肠杆菌乳糖代谢的基因调节系统中有3个连锁在一起的结构基因:

LacZ基因:决定β-半乳糖苷酶的形成.而β-半乳糖苷酶将乳糖水解成葡萄糖和半乳糖,作为细菌代谢活动的碳源。

LacY基因:决定β-半乳糖苷透性酶的合成。该酶的作用是使乳糖易于进入E.coli的细胞中。

LacA基因:编码β-半乳糖苷乙酰基转移酶,此酶的功能尚不清楚。

这3个结构基因具有两方面的特征:1.它们彼此紧密连锁。按Z,Y,A顺序排列,而且在一起转录形成一个多顺反子的mRNA;2.只有当乳糖存在时,这些基因才迅速转录,形成多顺反子的mRNA,并翻译成相应的酶.所以这些酶,就是由乳糖诱导产生的诱导酶,其活性的产生和活性的提高不是已有的酶被激活所致,而是在诱导物的诱导下酶的重新合成,并随着合成的进行,酶的浓度迅速增加的结果。

结构基因的分类

这三者是对基因的功能所作的区分,是以直线形式排列在染色体上。

结构基因:是决定合成某一种蛋白质或RNA分子结构相应的一段DNA。结构基因的功能是把携带的遗传信息转录给mRNA(信使核糖核酸),再以mRNA为模板合成具有特定氨基酸序列的蛋白质或RNA。

调节基因:是调节蛋白质合成的基因。它能使结构基因在需要某种酶时就合成某种酶,不需要时,则停止合成,它对不同染色体上的结构基因有调节作用。

操纵基因:位于结构基因的一端,是操纵结构基因的基因。当操纵基因“开动”时,处于同一染色体上的,由它所控制的结构基因就开始转录、翻译和合成蛋白质。当“关闭”时,结构基因就停止转录与、翻译。操纵基因与一系列受它操纵的结构基因合起来就形成一个操纵子。

结构基因的理论功能

结构基因在理论上有如下两种功能:其核苷酸顺序决定一条多肽链(蛋白质链)一级结构上的氨基酸序列,即一个顺反子(cistron)(带着足以决定一个蛋白质分子的全部组成需要信息的最短DNA片段);其核苷酸顺序也决定一条多核苷酸链(如mRNA)的核苷酸顺序。一种结构基因对应于一种蛋白质分子。结构基因在调节基因作用下进行转录或停止转录,故细胞中某一结构基因的存在并不意味着某一蛋白质的存在。当结构基因发生突变时,相应的蛋白质分子结构可能也将发生改变,从而往往使该蛋白质失活并导致代谢或形态异常。例如,当一个决定人的血红蛋白的结构基因发生突变时,可能造成遗传性贫血症;又如一个决定某种微生物合成某种氨基酸的酶的结构基因发生突变时,可能会使这一微生物菌株成为需要某种氨基酸的营养缺陷型。

篇4:基因诊断的名词解释

基因诊断的名词解释

基因诊断可分为基因直接诊断和基因间接诊断。核酸分子杂交是基因诊断最基本的方法之一。 基因诊断技术它的基本原理是互补的DNA单链能够在一定条件下结合成双链,即能够进行杂交。限制性核酸内切酶是基因工程和基因诊断重要的一类工具酶。它们的发现和应用为从基因组中分离目的基因提供了必要的手段。

基因诊断的分类

基因诊断可分为两类:

基因直接诊断

直接检查致病基因本身的异常。它通常使用基因本身或紧邻的DNA序列作为探针,或通过PCR扩增产物,以探查基因无突变、缺失等异常及其性质,这称为直接基因诊断,它适用已知基因异常的疾病;

基因间接诊断

当致病基因虽然已知但其异常尚属未知时,或致病基因本身尚属未知时,也可以通过对受检者及其家系进行连锁分析,以推断前者是否获得了带有致病基因的染色体。连锁分析是基于紧密连锁的基因或遗传标记通常一起传给子代,因而考察相邻DNA是否传递给了子代,可以间接地判断致病基因是否传递给子代。连锁分析多使用基因组中广泛存在的各种DNA多态性位,特别是基因突变部位或紧邻的多态性位点作为标记。RFLP、VNTR、SSCP、AMP-FLP等技术均可用于连锁分析。

遗传病的基因诊断举例

1.基因缺失型遗传的诊断(1)α地贫的基因诊断:α地贫主要是由于基因缺失引起的,缺失的基因可以由1-4个。正常基因组用BamHⅠ切割,可以得到一个14kb的片段,而缺失一个α基因时切点向5’端移位,得到一条10kb的片段。因此,当用α基因探针与基因组DNA进行Southern杂交时(图13-8),在α地贫2可见一条14kb和一条10kb的带,在正常人可见一条双份的14kb的带,而在α地贫1则见一条单拷贝的14kb带,血红蛋白H病时只有一条10kb的带的,而在Barts水肿胎时,则无任何杂交带。

一种较简便的方法是直接用α探针进行斑点杂交,自显影后根据斑点深浅的不同也可以对α地贫作出诊断。更为简单的方法是PCR诊断,即在α基因缺失范围内设计一对引物,然后PCR扩增胎儿的DNA,如为Barts 水肿胎,则无扩增产物,电泳后无任何带纹,从而可建议进行人工流产,但此法不能诊断其它类型的地贫(除非另设计引物用作PCR)。

(2)DMD/BMD的缺失型诊断:DMD/BMD是一种Ⅹ连锁隐性遗传的神经肌肉系统受累的致死性遗传病(参阅第四章)。DMD/BMD有70%左右为缺失型。此基因很大,缺失可发生在不同部位,因此应尽可能采用多对引物作PCR扩增(多重PCR)来检测。如扩增产物电泳后发现有带纹的缺失,即可作出诊断并对缺失定位(图13-9),在进行产前诊断时,一般可先通过检测家系中有关成员,即确定先证者的缺失区,然后有针对性地作PCR扩增,包括缺失部分的两端,以判断胎儿或有关患儿是否也获得了相同的基因缺失,但非缺失型不能用此法查出。

2.点突变型遗传病的基因诊断2(1)镰形细胞性贫血的基因诊断:已知突变基因是编码β珠蛋白链的第6位密码子由GAG变为GTG,从而使缬氨酸取代了甘氨酸,因此可用如下方法进行诊断。

1)RFLP诊断:已知限制酶MstⅡ切割的识别顺序是CCTNAGG,它能切割正常β链中CCTGAGG序列,但不能切割突变了的CCTGTGG(A→T)。这样,由于突变消除了一个切点,使内切酶长度片段发生了改变,通过电泳,就可以区别正常的βA和βS。

2)ASO探针诊断:由于突变部位和性质已完全明了,也可以合成寡核苷酸探针,用32P标化来进行诊断。此时需要合成两种探针,一种与正常βA基因序列完全一致,能与之稳定地杂交;另一种与突变基因序列一致,能与βS基因稳定杂交,但不能与正常的βA基因杂交。根据杂交结果,就可以把发生了突变的βS基因检测出来。

PCR技术问世以来,ASO诊断又有新的改进,即先PCR扩增长约110bp的基因片段,然后再与ASO探针杂交。这样可减少目的基因DNA用量,并降低与基因组DNA杂交时的非特异性信号。

3.基因异常不明的遗传病的诊断 成年型多囊肾病(adult polycystic kidney disease,APKD)是一种常染色体显性遗传病,发病率高,约1000人中有1名致病基因的携带者,起病较晚,多在30岁以后,主要为肾和肝中出现多发性囊肿,临床表现为腰疼、蛋白尿、血尿、高血压、肾盂肾炎、肾结石等,最终可导致肾功能衰竭和尿毒症。本病基因定位在16p13,与α珠蛋白基因3’端相邻,但致病基因尚未克隆,基因产物的生化性质和疾病发病机理也尚未阐明。因此,只能用连锁分析来进行基因的发病前诊断和产前诊断。由于通过家系分析,已证实APKD的致病基因与α珠蛋白基因3’端附近的一段小卫星DNA序列即3’HVR(3’ hypervariable region)紧密连锁,而后者在人群中具有高度多态性,因此可以通过RFLP连锁分析进行诊断。

>>>下一页更多精彩“基因诊断的基本原理”

篇5:目的基因的名词解释

目的基因的名词解释

把需要研究的基因称为目的基因。(一般把需要分析的基因称靶基因,在基因克隆过程中有时两者均称为插入基因,有时三者含义相近。所以有时有些书本上也笼统的称“用限制性核酸内切酶切割目的基因(靶基因)”)。

目的基因的制备方法

从细胞核中直接分离

简单的原核生物目的基因可从拟核中直接分离得到,但人类的基因分布在23对染色体上,较难从直接法中得到。

直接分离基因最常用的方法是“鸟枪法”,又叫“散弹射击法”。这种方法有如用猎枪发射的散弹打鸟,无论哪一颗弹粒击中目标,都能把鸟打下来。鸟枪法的具体做法是:用限制酶(即限制性内切酶)将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞所提供的DNA(外源DNA)的所有片段分别在受体细胞中大量复制(在遗传学中叫做扩增),从中找出含有目的基因的细胞,再用一定的方法把带有目的基因的DNA片段分离出来。如许多抗虫,抗病毒的基因都可以用上述方法获得。

用“鸟枪法”获取目的基因的优点是操作简便,缺点是工作量大,具有一定的盲目性。

染色体DNA的限制性内切酶酶解

II型限制性内切酶可专一性地识别并切割特定的DNA顺序,产生不同类型的DNA末端。若载体DNA与插入的DNA片段用同一种内切酶消化,或靶DNA与载体DNA末端具有互补的粘性末端,可以直接进行连接。

DNA分子经限制酶切割产生的DNA片段末端通常有两种形式——黏性末端和平末端。当限制酶在识别序列的中心轴线两侧将DNA的两条链分别切开时,产生的是黏性末端,而当限制酶在它识别序列的中心轴线处切开时,产生的则是平末端。

人工体外合成

简短的目的基因可在了解DNA一级结构或多肽链一级结构氨基酸编码的核苷酸序列的基础上人工合成。

用逆转录酶制备cDNA

大多数的目的基因是由mRNA合成cDNA(反转录DNA)得到。从RNA入手,先从细胞提取总RNA,然后根据大多数真核mRNA含有多聚腺嘌呤(polyadenylic acid ,polyA)尾的特点,用寡聚dT纤维素柱将mRNA分离出,以mRNA为模板,在多聚A尾上结合12-18个dT的寡聚dT片段,作为合适的起始引物,在逆转录酶作用下合成第一条。

从基因文库中获取

依据:基因的核苷酸序列,功能,在染色体中的位置,转录产物mRNA,翻译产物蛋白质的性质。

PCR技术扩增

PCR是多聚酶链式反应的缩写,由穆里斯等人于1988年发明的,1993年获诺贝尔奖。PCR是一种在生物体外迅速扩增DNA片断的技术,它能以极少量的DNA为模板,在几小时内复制出上百万份DNA拷贝。这项技术解决了因为样品中DNA含量太低而难以对样品进行分析研究的问题,被广泛地应用于遗传疾病的疹断、刑侦破案、古生物学、基因克隆和DNA序列测定等方面。PCR的原理是DNA双链复制的原理,将基因的核苷酸不断地加以复制,使其数量呈指数增长。利用PCR技术获取目的基因的前提,是要有一段已知目的基因的核苷酸序列,以便根据这一序列合成引物(2种)。扩增的过程是:目的基因DNA受热变性后解旋为单链,引物与单链相应互补序列结合,然后在DNA聚合酶的作用下进行延伸,如此重复循环多次。

目的基因的制备流程

cDNA链,用碱或RNA酶水解除去mRNA,再用DNA聚合酶,最好是Klenow片段合成第二条DNA链。双链合成后,用S1核酸酶切去发夹结构,即可获得双链cDNA。cDNA用于探针制备、序列分析、基因表达等研究。因此以cDNA为研究材料,反映了mRNA的转录及对以后翻译的影响情况,即反映某一基因(DNA)外显子的情况。

篇6:基因技术的名词解释

基因技术的名词解释

基因由人体细胞核内的DNA(脱氧核糖核酸)组成,变幻莫测的基因排序决定了人类的遗传变异特性。人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典。但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后,将成为医学和生物制药产业知识和技术创新的源泉。

基因技术的产生背景

人类基因组计划(HGP )与曼哈顿原子弹计划和阿波罗登月计划一起被称为二十世纪三大科学工程。它同时将贯穿于整个21世纪,被认为是21世纪最伟大的科学工程。

基因研究把一种疾病状态与一种或几种基因相对应起来研究的线性思维模式,并不能真实地阐明疾病发生发展的基因机理。

主要原因有二:

一是人类基因组所蕴含的约10万个基因迄今只有大约1 / 10被克隆和确定,对于复杂疾病相关的基因可能只知道一部分,按照线性思维模式去研究基因,永远是小作坊式和零敲碎打式的状态,不可能从“整体”上搞清疾病的基因机理。

二是疾病相关基因是通过其相互作用(即时空网络作用)参与疾病发生发展过程的,零敲碎打式研究不可能全面了解基因的网络作用。因此,诺贝尔奖获得者杜伯克首先提出应当从观念上改变零敲碎打模式,提倡“整体式”研究模式 ——即基因组研究模式。

只有先把人类基因组搞清楚,一切问题才有可能迎刃而解。美国国会遂于1990年10月1日批准正式启动HGP,为期15年。由于人类基因组的顺利进展,在人类基因的测序和研发过程中引发了基因技术的重大革新和革命,从而把现代生命科学推向一个崭新的阶段。

基因技术的应用领域

基因鉴定

通过遗传标记的检验与分析来判断父母与子女是否亲生关系,称之为亲子试验或亲子鉴定。DNA是人体遗传的基本载体,人类的染色体是由DNA构成的,每个人体细胞有23对(46条)成对的染色体,其分别来自父亲和母亲。夫妻之间各自提供的23条染色体,在受精后相互配对,构成了23对(46条)孩子的染色体。如此循环往复构成生命的延续。

基因制药

发现新药物作用靶位和受体是非常昂贵和漫长的,科学家只是依赖试错法来实现其药物研究和开发的目标。人类基因组研究计划完成后将削弱试错法在药物研究和开发中的突出地位,进而科学家可以直接根据基因组研究成果(确定靶位和受体)设计药物。这将大大缩短药物研制时间和大大降低药物研制费用,从而从整体上动摇人类制药工业的现状,使药物的开发研究过度到基因制药阶段。随着人类基因组计划的深入,一个大规模制药阶段已经来临。已有500 个基因用于药物开发,到HGP完成时,这一数目将增加6到20倍,达到3000-10000个。

首先从行业分布上来看,国内上述几类基因工程产品的市场格局大致呈现如下的状况:

1、重组类药物

市场上常用的胰岛素、水蛭素、降钙素等产品是通过提取或化学合成的方法获得的,因此在这方面国内外的企业和研究机构都还有相当多的工作可以做。当前,有许多院校和研究机构已在这方面取得了一定的进展,拿到了目的基因并在实验室构建了表达载体,但在表达量及分离纯化方面还有待突破。通化东宝宣布已获卫生部许可利用基因工程技术生产胰岛素,可见部分重组类药物的产业化生产已不再遥远,国内在这方面与国外的差距还不算大,是一个大有可为的新领域。

2、生物疫苗

一些疫苗如破伤风疫苗、脊髓灰质炎疫苗,市场上已相当普及,另外一些疫苗如肝炎疫苗,普及还不广,还有很大的市场空间可以扩展,许多疾病,甚至是常见病,如流感等还没有找到相应的疫苗。从市场情况来看,国内企业处于相对劣势,国产疫苗与进口的同类产品相比,虽然价格只有对方的2/3,但质量不稳定,而且操作起来非常不方便,因此在这个市场上,舶来品占据了相当的市场份额。

3、生物诊断

生物诊断试剂市场的情况与生物疫苗市场颇为相似,国内产品与进口同类产品主要在质量的稳定性、操作的方便性等方面存在着较大的差距,因而进口试剂诊断盒占据了大部分市场份额。

基因诊断

人类基因组研究计划最直接和最容易产生效益的地方就是基因诊断。基因诊断的意义:一是可以解决遗传性疾病难以诊断的黑洞,由于遗传性疾病主要是由特定的DNA序列即基因决定的, 通过基因诊断能够在遗传病患者还未发现出任何症状之前就能确诊;二是肝炎、癌症、艾滋病都与病毒有关,而通过基因诊断技术就可以顺利检查出隐藏在人体细胞基因中的病毒从而在造成危害之前消灭它们。基因诊断主要运用于:一是通过检测特定基因或相关疾病基因的存在以判断和评估某疾病在某一个体上发生某疾病的风险,并设法预防这种疾病的发生;二是通过基因诊断促使个性化药物的诞生;三是通过基因诊断更精确的判断某些传染性疾病或肿瘤等疾病的存在,以有利于临床医生尽早确定病因。基因诊断技术不仅在疾病检测上具有重要意义,而且在婚前检查、亲子鉴定等人类生活方面具备广阔的运用前景。

基因治疗

就是通过向人体细胞基因组转换损坏了的基因或引入正常的基因从而达到治疗疾病的方法。基因治疗是被认为是治疗遗传病的唯一方法,如把第9 凝血因子置入患者可以治疗血友病,把胰岛素置入糖尿病患者的体细胞可以治理糖尿病等等。基因治疗被称为人类医疗史上的第四次革命,遗传学表明人类有6500种遗传性疾病是由单个基因缺陷引起的,而通过基因治疗置入相关基因将使人类的许多不治之症得以克服。

基因克隆

是指把一个生物体中的遗传信息(DNA)转入另一个生物体内。 利用基因克隆技术不仅可以培育出自然界不可能产生的新物种,而且可以培养带有人体基因的动植物作为“生物反应器”生产基因工程产品,还可制造用于人体脏器移植的器官,使人体能够抑制对异体器官的排斥,从而解决供移植的人体器官来源不足的问题。现在动植物克隆已成为现代科技进步中最具有冲击力和争议性的事件,克隆羊和克隆猪的出现引发人类克隆自身的担忧,而植物克隆和大量转基因食物大规模出现引发了人们对于生物物种混乱和污染的担忧。但不可否认的是,植物克隆可以为人类食品来源开启广阔的空间,而动物克隆可以利用动物生产大量人类需要的基因药物和器官。

遗传学试题

电大考试答案

生物遗传与变异的现象说课稿

动物医学实验教学的体系改革论文

生第二胎需要考虑的问题

高考生物命题热点

甲状腺结节是因为什么

传统中医学论文范文

遗传系谱图高考生物专项训练

人教版生物必修三教案

单基因病的名词解释
《单基因病的名词解释.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【单基因病的名词解释(精选6篇)】相关文章:

生物的遗传现象教案2023-03-24

甲状腺结节有什么病因2022-06-18

生物学教学2022-11-28

人类的形成教学设计2022-11-27

初中生如何高效学习好生物知识2023-01-20

基因诊断的名词解释2022-10-13

普伐他汀钠片说明书2022-04-30

高智商句子2023-05-03

儿童龋病预防进展论文2023-08-24

人教版必修5 life in the future 教案Listening2023-08-30

点击下载本文文档