大体积混凝土裂缝分析及措施论文((共14篇))由网友“姐妹吃瓜嘛”投稿提供,下面是小编为大家带来的大体积混凝土裂缝分析及措施论文,希望大家能够喜欢!
篇1:大体积混凝土裂缝分析及措施论文
大体积混凝土裂缝分析及措施论文
摘要:混凝土是以胶凝材料、水、细骨料、粗骨料、需要时掺入外加剂和矿物掺合料,按适当比例配合,经过均匀拌制、密实成型及养护硬化而成的人工石材。在施工过程中,经常发现混凝土结构在成型后,出现各种裂缝。本文对大体积混凝土的裂缝成因与措施做如下论述。
关键词:混凝土裂缝措施
1混凝土裂缝产生的主要原因
1.1混凝土结构的宏观裂缝产生的原因主要有三种:
1.1.1由外荷载引起的裂缝,这是发生最为普遍的一种情况,即按常规计算的主要应力引起的;
1.1.2结构次应力引起的裂缝,这是由于结构的实际工作状态与计算假设模型的差异引起的;
1.1.3变形应力引起的裂缝,这是由温度、收缩、膨胀、不均匀沉降等因素引起的结构变形,当变形受到约束时便产生应力,当此应力超过混凝土抗拉强度时就产生裂缝。
1.2当混凝土结构物产生变形时,在结构的内部,结构与结构之间,都会受到相互影响.相互制约,这种现象称为约束。当混凝土结构截面较厚时,其内部温度和湿度分布不均匀,引起内部不同部位的变形相互约束,这样的约束称之为内约束;当一个结构物的变形受到其他结构的阻碍所受到的约束称为外约束。外约束又可分为自由体、全约束和弹性约束。建筑工程中的大体积混凝土结构所承受的.变形,主要是温差和收缩而产生的。
1.3建筑工程中的大体积混凝土结构中,由于结构截面大,水泥用量多,水泥水化所释放的水化热会产生较大的温度变化和收缩作用,由此形成的温度收缩应力是导致钢筋混凝土产生裂缝的主要原因。这种裂缝有表面裂缝和贯通裂缝两种。表面裂缝是由于混凝土表面和内部的散热条件不同,温度外低内高,形成了温度梯度,使混凝土内部产生压应力,表面产生拉应力,表面的拉应力超过混凝土抗拉强度而引起的。贯通裂缝是由于大体积混凝土在强度发展到一定程度,混凝土逐渐降温,这个降温差引起的变形加上混凝土失水引起的体积收缩变形,受到地基和其他结构边界条件的约束时引起的拉应力,超过混凝土抗拉强度时所可能产生的贯通整个截面的裂缝。这两种裂缝不同程度上,都属有害裂缝。
2控制混凝土裂缝的措施
为了有效地控制有害裂缝的出现和发展,必须从控制混凝土的水化升温、延缓降温速率、减少混凝土收缩、提高混凝土的极限拉伸强度、改善约束条件和设计结构等方面全面考虑,结合实际采取措施。
2.1降低水泥水化热和变形
2.1.1选用低水化热或中水化热的水泥品种配置混凝土,如矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰水泥、复合水泥等。
2.1.2充分利用混凝土的后期强度,减少每立方米混凝土中水泥用量。根据试验每增减10kg水泥,其水化热将使混凝土的温度相应升降1℃。
2.1.3使用粗骨料,尽量选用粒径较大、级配良好的粗骨料;控制砂石含泥量;掺加粉煤灰等掺合料和相应的减水剂、缓凝剂,改善和易性、降低水灰比,以达到减少水泥用量、降低水花热的目的。
2.1.4在基础内部预埋冷却水管,通入循环冷却水,强制降低混凝土水化热温度。
2.1.5在厚大无筋或少筋的大体积混凝土中,掺加总量不超过20%的大石块,减少混凝土的用量,以达到节省水泥和降低水化热的目的。
2.1.6在拌合混凝土时,还可掺入适量的微膨胀剂或膨胀水泥,使混凝土得到补偿收缩,减少混凝土的温度应力。
2.1.7改善配筋。为了保证每个浇筑层上下均有温度筋,可建议设计人员将分布筋做适当的调整。温度筋分布细密,一般用φ8钢筋,双向配筋,间距15cm.这样可以增强抵抗温度应力的能力.上层钢筋的绑扎,应在浇筑完下层混凝土之后进行。
2.1.8设置后浇缝.当大体积混凝土平面尺寸过大时,可以适当设置后浇缝,以减少外应力和温度应力;同时也有利于散热,降低混凝土地内部温度。
2.2降低混凝土温度差
2.2.1选择较适宜的气温浇筑大体积混凝土,尽量避开炎热天气浇筑混凝土,夏季可采用低温水或冰水搅拌混凝土,可对骨料喷冷水晒,运输工具如具备条件也应搭设遮阳设施,以降低混凝土拌合物的入模温度。
2.2.2掺加相应的缓凝型减水剂,如木质素磺酸钙等.
2.2.3在混凝土入模时,采取措施改善和加强模内的通风,加速模内热量的散发。 2.3加强施工中的温度控制
2.3.1在混凝土浇筑之后,做好混凝土地保温保湿养护,缓缓降温,充分发挥徐变特性,减低温度应力,夏季应注意避免暴晒,注意保湿,冬季应采取措施保温覆盖,以免发生急剧的温度梯度发生。
2.3.2采取长时间的养护,规定合理的拆模时间,延缓降温时间和速度,发挥凝土的“应力松弛效应”。
2.3.3加强测温和温度监测与管理,实行信息化控制,随时控制混凝土内的温度变化,内外温差控制在25℃以内,基面温差和基底面温差均控制在20℃以内,及时调整保温及养护措施,使混凝土地温度梯度和湿度不至过大,以有效控制有害裂缝的出现。
2.3.4合理安排施工程序,控制混凝土在浇筑过程中均匀上升,避免混凝土拌合物堆积过大高差.在结构完成后及时回填土,避免其侧面长期暴露。
2.4改善约束条件,消减温度应力
2.4.1采取分层或分块浇筑大体积混凝土,合理设置水平或垂直施工缝,或在适当的位置设置后浇带,以放松约束程度,减少每次浇筑长度的蓄热量,防止水化热的集聚,减少温度应力。
2.4.2对大体积混凝土基础与岩石地基,或基础与厚大的混凝土垫层之间设置滑动层,如采用平面浇沥青胶铺砂或刷热沥青或铺卷材.在垂直面、健槽部位设置缓冲层,如铺设30~50mm厚沥青木丝板或聚苯乙烯泡沫塑料,以消除嵌固作用,释放约束应力。
2.5提高混凝土的极限拉伸强度
2.5.1选择良好级配的粗骨料,严格控制其含泥量,加强混凝土的振捣,提高混凝土密实度和抗拉强度,减小收缩变形,保证施工质量。
2.5.2采取二次投料法,二次振捣法,浇筑后及时排除表面积水,加强早期养护,提高混凝土早期或相应龄期的抗拉强度和弹性模量。
2.5.3在大体积混凝土基础内设置必要的温度配筋,在截面突变和转折处,底顶板与墙转折处,孔洞转角及周边,增加斜向构造配筋,以改善应力集中,防止裂缝出现。
3结语
3.1经过以上的分析可以看出,大体积混凝土有自己的特性,采取有效的、合理的、科学的手段是可以避免混凝土裂缝的发生。
3.2只要我们在实际的施工过程中,严格执行设计和施工验收规范以及施工操作规程,大体积混凝土裂缝问题是可以解决的。
篇2:大体积混凝土裂缝分析及防治裂缝措施的论文
1、引言
现代建筑中时常涉及到大体积混凝土施工,如高层楼房基础、火力发电厂汽机机座基础、冷却塔基础、水利大坝等。大体积混凝土水泥水化热释放比较集中,内部温升比较快。混凝土内外温差较大时,会使混凝土产生温度裂缝。其他因素也会导致大体积混凝土出现裂缝,影响结构安全和正常使用。所以必须从根本上分析它,来保证成品的质量。
2、大体积混凝土裂缝的原因
大体积混凝土结构裂缝的发生是由多种因素引起的。各类裂缝产生的主要影响因素有几种:一是结构型裂缝,由外荷载引起的。二是材料型裂缝,主要由温度应力和混凝土的收缩引起的。
3、大体积混凝土裂缝的主要类型
3.1干缩裂缝
干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的`一周左右。水泥浆中水分的蒸发会产生干缩,且这种收缩是不可逆的。干缩裂缝的产生主要是由于混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、集料的性质和用量、外加剂的用量等有关。
3.2塑性收缩裂缝
混凝土塑性收缩裂缝形成过程与混凝土的泌水有关。泌水是指混凝土浇筑捣实后尚未凝结硬化之前,从外表看在混凝土的浇筑面上山现一层清水或者从模扳缝中渗出部分水的一种现象。泌水使混凝土的体积缩小,促成了混凝土塑性裂缝的产生。影响混凝土塑性收缩开裂的主要因素有水灰比、混凝土的凝结时间、环境温度、风速、相对湿度等等。
3.3沉陷裂缝
沉陷裂缝的产生是由于结构地基土质不匀、松软,或回填土不实或浸水而造成不均匀沉降所致。或者因为模板刚度不足,模板支撑间距过大或支撑底部松动等导致。特别是在冬季,模板支撑在冻土上,冻土化冻后产生不均匀沉降,致使混凝土结构产生裂缝。
3.4温度裂缝
温度裂缝多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。混凝土浇筑后,在硬化过程中,水泥水化产生大量的水化热。由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升。而混凝土表面散热较快,这样就形成内外的较大温差。较大的温差造成内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。在混凝土的施工中当温差变化较大,或者是混凝土受到寒潮的袭击等,会导致混凝土表面温度急剧下降,而产生收缩。
4裂缝的防治措施
4.1设计措施
4.1.1.精心设计混凝土配合比。在保证混凝土具有良好工作性的情况下,应尽可能地降低混凝土的单位用水量,采用“三低(低砂率、低坍落度、低水胶比)二掺(掺高效减水剂和高性能引气剂)一高(高粉煤灰掺量)”的设计准则,生产出高强、高韧性、中弹、低热和高极拉值的抗裂混凝土。
4.1.2.增配构造筋提高抗裂性能。配筋应采用小直径、小间距。
4.1.3.避免结构突变产生应力集中,在易产生应力集中的薄弱环节采取加强措施。
4.1.4.在易裂的边缘部位设置暗梁,提高该部位的配筋率,提高混凝土的极限拉伸。
4.1.5.在结构设计中应充分考虑施工时的气候特征,合理设置后浇带。
4.2施工措施
4.2.1.严格控制骨料级配和含泥量
选用10.40mm连续级配碎石,细度模数2.80-3.00的中砂。砂、石含泥量控制在1%以内,并不得混有有机质等杂物,杜绝使用海砂。
4.2.2.选择适当外加剂
可根据设计要求,混凝土中掺加一定用量外加剂,如防水剂、膨胀剂、减水剂、缓凝剂等外加剂。
4.2.3.选择优化配合比
选用良好级配的骨料,严格控制砂石质量,降低水灰比,并在混凝土中掺加粉煤灰和外加剂等,以降低水泥用量,减少水化热,以降低混凝土温升,从而可以降低混凝土所受的拉应力。
4.2.4严格控制混凝土入模温度
大体积混凝土最好选在春秋季施工,以降低入模温度,既是在夏季施工最好采取有效措施降低入模温度,再者浇筑混凝土时最好不要让混凝土在太阳下直接爆晒。施工过程中应对碎石洒水降温,保证水泥库通风良好,自来水预可先放入地下蓄水池中降温。
4.2.5.改进施工技术
施工时加强插筋位置的振捣、抹压、养护。由于钢筋是热的良导体,易产生大的温度梯度,这是裂缝产生的一个主要环节。同时加强初凝前的抹压,以消除初期裂缝,并加强早期养护,提高混凝土抗拉强度。
4.2.6.加强混凝土浇筑后的养护
混凝土浇筑后,应尽快回填土--土是混凝土最好的养护材料之一。目前这是混凝土保温保湿养护的最有效方法,对预防裂缝是非常有益的。如采用蓄水法保温养护,在混凝土施工期间可通入冷却循环水,以便加快承台内部热量的散发。如采用内散外蓄综合养护措施,可有效降低混凝土的温升值,且可大大缩短养护周期,对于超厚大体积混凝土施工尤其适用。
5结语
大体积混凝土结构的裂缝会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,为避免或减少裂缝对结构产生的危害,采用有效的设计措施,紧抓施工环节,严控施工过程,方能确保工程质量。
参考文献
[1]《大体积混凝土温度应力于温度控制》朱伯芳中国电力出版社
[2]《混凝土结构裂缝防治技术》张雄化学工业出版社
篇3:大体积混凝土裂缝原因分析及控制措施论文
大体积混凝土是指混凝土结构实体最小尺寸超过1米的大体量混凝土或者预测因混凝土水化热会出现有害裂缝的混凝土。在新形势下,高层建筑、超高层建筑、大型桥梁等层出不穷,混凝土构件的体量也日渐变大,大体积混凝土结构应运而生,面积较大、体积较厚,极易出现裂缝问题,大幅度降低了工程质量,必须综合分析大体积混凝土裂缝的成因,通过不同途径采取有效的预防措施,避免大体积混凝土裂缝频繁出现。
1.大体积混凝土裂缝的成因
1.1收缩裂缝
混凝土收缩是指混凝土拌合物硬化过后体积逐渐减小的现象,是自发的,和水泥特性紧密相连。混凝土收缩受到外部约束的时候,比如,钢筋、模板,混凝土内部会产生拉应力,一旦超过混凝土抗拉强度,混凝土便会出现裂缝问题。由于收缩的原因各不相同,混凝土收缩类型收缩并不单一,即温度收缩、塑性收缩、自收缩、干燥裂缝。以“自收缩”为例,c-s-H凝胶是泥水化反应的核心产物,其体积不超过水泥、水二者之和,也就是说,固相体积增加的同时,水泥浆体却在不断减小,这便是自收缩,2/3的硅酸盐水泥浆体全都水化之后,理论上体积会减缩7%-9%。
1.2温度裂缝
在混凝土凝固过程中,水泥水化会释放大量的水化热,从而使混凝土内部的温度随之上升。大体积混凝土结构在内外环境温差的作用下,结构内温度会随时间增长而降低,直至达到多年平均气温水平。混凝土的温度变化过程分为温升、冷却降温、稳定三个阶段。大体积混凝土的温度变化会引起温度变形,受到约束产生温度应力,当拉应力超过抗拉强度时产生裂缝。
1.3环境条件
环境温度和湿度的变化会在混凝土内部形成变化不均匀的温度场和湿度场,促使内部微裂缝的发展,进而形成表面的宏观裂缝。大体积混凝土工程施工时,如果遇到连续的低温天气,混凝土浇筑后就会因为内外温差过大而产生混凝土裂缝。连续阴雨天气下,过多的雨水会渗入混凝土内部,影响混凝土的凝固,造成微小裂缝的扩展。混凝土浇筑之后及时完善的养护可以减小收缩变形。
1.4施工裂缝
施工中所产生的裂缝原因较多,主要是由于人工操作的原因,施工工艺的选择,施工裂缝产生的原因众多,而其裂缝的分布是随机的,一般主要是由于浇筑与模板粘合的不充份,或是进行浇筑时较快,其浇筑的程序缺少正确的方式等,以上这些原因都会导致混凝土产生裂缝,对水利工程的质量产生影响。
2.控制措施
2.1优选混凝土各种原材料
2.1.1水泥的选择
理论研究表明大体积混凝土产生裂缝的主要原因就是水泥水化过程中释放了大量的热量。因此在大体积混凝土施工中应尽量使用低热或者中热的.矿渣硅酸盐水泥、火山灰水泥,并尽量降低混凝土中的水泥用量,以降低混凝土的温升,提高混凝土硬化后的体积稳定性。为保证减少水泥用量后混凝土的强度和坍落度不受损失,可适度增加活性细掺料替代水泥。
2.1.2骨料的选择
在选择粗骨料时,可根据施工条件,尽量选用粒径较大、质量优良、级配良好的石子。既可以减少用水量,也可以相应减少水泥用量,还可以减小混凝土的收缩和泌水现象。在选择细骨料时,采用平均粒径较大的中粗砂,从而降低混凝土的干缩,减少水化热量,对混凝土的裂缝控制有重要作用。
2.1.3掺加外加料和外加剂
掺加适量粉煤灰,可减少水泥用量,从而达到降低水化热的目的。但掺量不能大于30%。掺加适量的减水剂,它可有效地增加混凝土的流动性,且能提高水泥水化率,增强混凝土的强度,从而可降低水化热,同时可明显延缓水化热释放速度。
2.2坚持科学的施工工艺
(1)根据工程的具体情况,通过计算温度应力来确定混凝土浇筑方式。可以选取夜间进行浇筑工作,从而减小温差应力,减少裂缝的产生。浇筑时据混凝土泵送产生的坡度,在混凝土卸点和坡角处布置振捣点,确保混凝土振实。因混凝土的流动性很大,泵送混凝土浇筑完毕之后,为消除混凝土表面裂缝,要在混凝土初凝之后、终凝之前进行二次振捣,提高混凝土防水性能。充分的振捣可以有效减少结构性裂缝。(2)在整个施工过程中要做好对温度的测量、控制工作。采用先进的测温装置做好温度记录,可以全面、准确的掌握大体积混凝土内部的实r温度变化,技术人员可以利用测量结果制定、实施相应的温控措施。(3)重视大体积混凝土的养护工作。在工程项目建设中,施工企业必须做好混凝土养护工作,可以用塑胶袋包裹混凝土表面,也可以采用麻袋、棉毡等材料,可以起到较好的保湿作用,混凝土养护比较及时,浇筑结束后必须及时养护,确保在混凝土硬化早期养护到位。
3.结语
总而言之,在工程项目建设中,施工企业必须意识到大体积混凝土裂缝的重要性,要根据其成因,根据施工现场水文、地质等情况,采取适宜的裂缝预防措施,科学施工。以此,提高工程整体性能与质量,将所产生的裂缝危害降到最低,减少因其裂缝的产生对水利工程的质量与寿命产生影响。使其更好地投入到运行中,具有较好的“经济、社会、生态”效益。
篇4:桥梁工程中大体积混凝土裂缝问题分析论文
摘要:桥梁工程在当前社会比较常见,其可以改善人们的生活质量,可以保证人们出行的方便性,是现代化城市建设的有效方式。在桥梁工程中,需要应用大体积混凝土技术,桥梁工程也比较容易出现裂缝问题,这与混凝土的特性有着较大关系,还与施工人员的技术水平有着一定关系,在施工的过程中,一定要采用先进的施工技术,还要保证操作的规范性,降低大体积混凝土出现裂缝的概率,从而控制桥梁工程的施工质量。
关键词:桥梁工程;控制;大体积;混凝土;裂缝;原因
桥梁工程是我国城市建设中重要的施工项目,桥梁的结构多属于混凝土结构类型,在应用大体积混凝土施工技术时,一定要做好材料质检工作,还要掌握施工的技巧,这样才能降低桥梁工程出现裂缝问题的概率在大体积混凝土施工中,会受到较多因素的影响,施工人员需要做好预防控制工作,要降低外界环境因素对施工质量以及效率的影响,还要提高施工的技术水平,避免出现操作失误或者施工流程不合格问题。
篇5:桥梁工程中大体积混凝土裂缝问题分析论文
在桥梁工程中,需要应用大量的混凝土材料,混凝土是一种复合材料,其有着较多的特性,在应用的过程中,要了解其特性,并做好施工质量控制工作,这样才能保证桥梁工程的质量。下面笔者对桥梁工程中大体积混凝土裂缝产生的原因进行简单的介绍。
1.1水化热因素
混凝土中含有较多的水泥成分,水泥会产出生水化热反应,而且会释放较多的热量,这增加了混凝土出现温差裂缝的概率。通过实验发现,1g水泥在水化热反应中会释放出500J的热量,在大体积混凝土施工中,由于混凝土材料的使用量比较大,所以产生的热量比较多,混凝土可能会出现内外温差过高的问题。在对混凝土进行搅拌时,会使混凝土的温度不断升高,如果施工人员没有做好散热工作,会导致混凝土内部出现较大的压应力,而混凝土外部又会出现较大的拉应力,当这一应力超过混凝土的承载能力后,就会出现混凝土裂缝现象。
1.2混凝土收缩
混凝土在存放的过程中,如果存储方式不当,没有在密闭的环境下保管,会出现体积缩减的情况,这也被称为混凝土收缩。混凝土在外力的影响下,会出现形变现象,而且会使混凝土内部产生较大的应力,当应力过大时,会导致混凝土出现较多的裂缝。混凝土收缩包括塑性收缩、干燥收缩以及温度收缩,在控制的过程中,需要结合收缩原因。如果是干燥收缩,则需要做好养护工作,要对混凝土定时浇水,避免其水份过度蒸发,从而引起干裂现象。
1.3大气温度与湿度的变化
混凝土在施工的过程中,会受到外界环境的影响,其中影响最大的就是温度与湿度这两个因素。大体积混凝土结构在施工作业期间受温度的影响非常明显,所以为了防止混凝土受到温度的影响而产生裂缝,一定要对浇筑中的各个环节的温度进行严格的控制,但是最主要的影响因素还是外界的温度,外界的温度高,在进行混凝土浇筑时温度也就会很高,但是当外界的温度下降时,由于混凝土内部存在着明显的温度梯度,所以外界温度如果出现急剧下降的情况,混凝土结构的内部就会出现很大的.温度应力,所以也非常容易导致混凝土结构产生裂缝。此外外界温度的变化对混凝土裂缝也会产生非常大的影响,如果外界的温度出现了明显的下降情况,混凝土也会产生裂缝现象。
2大体积混凝土裂缝的控制
2.1大体积混凝土中水泥的品种及用量
水泥水化过程中释放了大量的热量是大体积混凝土产生裂缝的主要原因,因而低热或者中热的水泥品种应为首选。水泥内矿物成份的不同决定了水泥释放温度的大小及速度。铝酸三钙在水泥矿物中发热速率最快且发热量最大,其次为硅酸三钙、硅酸二钙和铁铝酸四钙。另外,水泥越细发热速率越快,但是不影响最终发热量。因此我们在大体积混凝土施工中应尽量使用矿渣硅酸盐水泥、火山灰水泥。我们应该充分利用混凝土的后期强度,以减少水泥用量。因为大体积混凝土施工期限长,不可能28d向混凝土施加设计荷载,因此将试验混凝土标准强度的龄期向后推迟至56d或者90d是合理的。正是基于这一点,国内外很多专家均提出类似的建议。这样充分利用后期强度则可以每m3混凝土减少水泥40kg~70kg左右,混凝土内部的温度相应降低4℃~7℃。
2.2掺加外加料和外加剂
为了改善混凝土的工作度,增加混凝土的密实度,提高抗渗能力,减少水泥用量,降低最终收缩值,我们会在大体积混凝土中掺入一定量的粉煤灰。利用粉煤灰作混凝土的掺合料能有效降低大体积混凝土的水泥水化热引起的内部温升,防止结构出现温度裂缝。外加剂可以从以下几个方面来选择:UFA膨胀剂,它可以等量替换水泥,并且使混凝土产生适度的膨胀。一方面保证混凝土的密实度,另一方面使混凝土内部产生压力,以抵消混凝土中产生的部分拉应力。减水缓凝剂,并应保证一定的坍落度。这样可以延缓水化热的峰值期并改善混凝土的和易性,降低水灰比以达到减少水化热的目的。
2.3大体积混凝土的骨料控制
为了有效减小混凝土结构当中的孔隙率和表面积,要选择粒径将对较大,强度也能够满足施工要求的骨料,这样就可以减少一部分水泥的使用,减少水化反应当中释放的热量,从而减少了收缩,也减少了混凝土裂缝的产生。
2.4大体积混凝土的裂缝检查与处理
大体积混凝土的裂缝分为三种:表面裂缝、深层裂缝、贯穿裂缝。对结构应力、耐久性和安全基本没有影响的表面裂缝一般不作处理。对深层裂缝和贯穿裂缝可以采取凿除裂缝,可以用风镐、风钻或人工将裂缝凿除,至看不见裂缝为止,凿槽断面为梯形再在上面浇筑混凝土。限裂钢筋,在处理较深的裂缝时,一般是在混凝土已充分冷却后,在裂缝上铺设1~2层钢筋后再继续浇筑新混凝土。对比较严重的裂缝可以采用水泥灌浆和化学灌浆。水泥灌浆适用于裂缝宽度在0.5mm以上时,对于裂缝宽度小于0.5mm时应采取化学灌浆。化学灌浆材料一般使用环氧-糠醛丙酮系等浆材。
结束语
通过分析发现,桥梁裂缝问题主要是因为混凝土比较容易出现水化热现象,会出现温差裂缝,而且有的施工人员缺乏质量意识,在大体积混凝土施工中,没有做好质量控制工作。桥梁工程出现较多的裂缝问题,会影响桥梁的安全性,还会影响桥梁功能的发挥,所以,施工单位必须采取有效的措施对施工质量进行控制。
参考文献
[1]姚霖.桥梁工程中大体积混凝土裂缝的原因分析[J].门窗,(9).
[2]黄建春.浅析混凝土桥梁裂缝类型与控制措施[J].科技信息,(6).
[3]朱登霞.桥梁设计中结构耐久性问题探讨[J].今日科苑,2009(8).
[4]殷子.浅谈桥梁施工工程中的质量控制与监理[J].科技信息,(9).
篇6:水工大体积混凝土裂缝成因及防治措施
水工大体积混凝土裂缝成因及防治措施
本文介绍了水工大体积混凝土的特点,分析了水工大体积混凝土裂缝产生的机理和主要原因,提出水工大体积混凝土裂缝控制技术.
作 者:董礼翠 童沛 作者单位:江苏省水利勘测设计研究院有限公司,江苏,扬州,225009 刊 名:科技信息 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期):2009 “”(13) 分类号:U4 关键词:水工结构 大体积混凝土 裂缝机理 裂缝控制篇7:大体积混凝土裂缝成因及防治措施的建筑工程论文
大体积混凝土裂缝成因及防治措施的建筑工程论文
摘要:分析了大体积混凝土施工中产生裂缝的原因,并从混凝土材料组成、环境条件、施工工艺、外部荷载等方面,提出了针对性的防治措施,以有效解决混凝土裂缝问题,进而保证工程的施工质量。
关键词:大体积;混凝土;裂缝;措施
当前,建筑工程中一个绕不开的重要话题就是大体积混凝土施工,其主要特征就是体积大、水泥释放大量水化热,表面系数不高且内部温度上升快。要是混凝土内外温差变化急剧,混凝土就会出现裂缝,威胁建筑结构的安全,不利于工程施工的顺利开展。因此,研究大体积混凝土裂缝问题并进行有效地质量控制十分必要。
1.大体积混凝土施工特点
大体积混凝土体积相对较大,一次性完成浇筑。在施工过程中,由于超负荷的温度应力的存在,常常会出现裂缝。裂缝根据大小的不同可以分为宏^裂缝和微观裂缝两种。其中,宏观裂缝可以用肉眼直接观察到,对建筑物的施工质量有很大威胁;微观裂缝一般不会影响工程的施工质量,但是,微观裂缝可能会在某些因素的作用下发展成宏观裂缝,从而影响施工质量。因此,在大体积混凝+32程的施工过程中,控制裂缝的产生和发展就成为质量控制的关键所在。想要控制裂缝的产生及发展就要找出在大体积混凝土施工过程中裂缝的成因及发展规律,从而降低裂缝出现的概率;对于已经出现的裂缝要及时的进行处理,从而保证大体积混凝土的施工质量。
2.大体积混凝土施工过程中裂缝的成因
导致大体积混凝土施工过程中裂缝产生的主要原因是由于混凝土的温度应力和收缩应力的存在。而温度应力和收缩应力产生的主要原因可以归纳为以下四个方面。
2.1混凝土的材料组成
大体积混凝土工程在混凝土浇筑初期容易产生较高的水化热,水化热在混凝土内部积聚使混凝土内部温度远大于表面温度,内外温差的存在会产生温度应力,使混凝土内部受压外部受拉,而当拉应力超过混凝土抗压强度时,就会导致裂缝的产生。
水化热的程度与水泥种类及其用量密切相关,不同的.混合比、骨料级配等也会不同程度的影响水化热程度。
从微观上分析,可以将大体积混凝土看作由粗骨料和硬化水泥砂浆两种主要材料构成。水泥在水化作用之后逐渐凝结、硬化,在这个过程中,水泥浆失水收缩变形远大于粗骨料的收缩变形,收缩变形差的存在会使粗骨料受压,砂浆受拉,应力分布图见图1,以致骨料界面产生微裂缝,继而在某些因素的作用下发展成宏观裂缝。混凝土中水泥用量越大,收缩变形量越大;骨料粒径、含量越大,则收缩变形量越小。
配置混凝土时使用的各种添加剂也会不同程度的影响收缩量。因此,在大体积混凝土工程中,混凝土材料的选择会直接影响到裂缝的产生。另外,不合格的建筑材料在使用过程中极易发生性能劣化,从而影响混凝土的施工质量。
2.2环境条件
环境温度和湿度的变化会在混凝土内部形成变化不均匀的温度场和湿度场,促使内部微裂缝的发展,进而形成表面的宏观裂缝。大体积混凝土工程施工时,如果遇到连续的低温天气,混凝土浇筑后就会因为内外温差过大而产生混凝土裂缝。连续阴雨天气下,过多的雨水会渗入混凝土内部,影响混凝土的凝固,造成微小裂缝的扩展。混凝土浇筑之后及时完善的养护可以减小收缩变形。
2.3施工工艺
在大体积混凝土的施工过程中,混凝土的浇筑、振捣和后期养护都与裂缝的产生息息相关。一般大体积混凝土分层浇筑时,不同层面的混凝土由于温度、荷载的不同而容易产生深层裂缝,不正确的振捣方式也会造成混凝土分层开裂。
2.4外部荷载
大体积混凝土需要充分的时间凝固。在混凝土没有完全凝固之前,要避免在混凝土模板上堆放重物,防止混凝土板面局部受力过大而产生裂缝,如图2所示。同时,如果混凝土没有完全凝固就过早拆模,混凝土板面就会因为受到内部膨胀力的作用而产生裂缝。
3.大体积混凝土施工中的裂缝防治措施
通过以上分析可知,大体积混凝土的裂缝控制需要从消除温度应力和收缩应力方面人手,而温度应力与收缩应力和建筑材料的选择及施工工艺有着直接的联系。因此,想要解决大体积混凝土施工中的裂缝问题,进行良好的质量控制,就要从合理选择建筑材料和坚持科学的施工工艺两方面做起。
3.1合理选择建筑材料
混凝土建筑材料的合理选择主要包括水泥、骨料级配、外加剂、掺合料等方面:
(1)水泥的水化热作用是大体积混凝土产生裂缝的主要原因之一。因此,在施工过程中应尽量选用低水化热的水泥来进行混凝土的配置。其次,在满足混凝土强度的前提下,尽量降低水泥的用量。
(2)选择合适的骨料级配以降低水泥用量,提高混凝土和易性,降低水化热释放的速度,控制混凝土的升温。为控制裂缝产生,粗骨料可以采用粒径范围5mm-20mm的碎石,含泥量不超过1%;细骨料则采用粒径范围在0.15mm~Smm级配良好的中砂,含泥量不超过2%。
(3)随着科技的发展,作为混凝土重要组分的外加剂应用不断增加。合理利用外加剂也可以很好地控制裂缝发展。因此,在满足强度的要求下,应优化混凝土配合比,利用外加剂提高混凝土的抗裂性能。例如在大体积混凝土中适当添加膨胀剂,混凝土内部产生膨胀应力可以抵消部分收缩应力,提高混凝土的抗裂强度。
(4)混凝土中加入粉煤灰、矿渣粉等掺合料可以减少水泥和水的用量,从而改善混凝土抗裂性能。因而,在大体积混凝土中可以采用粉煤灰代替部分水泥的方式,降低水泥的水化热,提高抗渗抗裂能力。
(5)在混凝土中掺入一定数量的分散的短纤维所形成的纤维混凝土可以增强混凝土抵抗裂缝开展的能力。建筑材料是减少大体积混凝土裂缝问题的关键所在,施工企业要严格按照相关规定选择建筑材料,做好材料验收工作,坚决不能采用劣质材料。建筑材料在存储期间也要重视选择合适的存储环境,防治存储不当而造成的材料质量下降问题。还要定期检查材料,一旦发现材料过期或性能不达标就要坚决弃用。
3.2坚持科学的施工工艺
大体积混凝土中,建筑材料的特性决定了结构是否容易产生裂缝,施工工艺则是裂缝问题的主要人为因素:
(1)根据工程的具体情况,通过计算温度应力来确定混凝土浇筑方式。可以选取夜间进行浇筑工作,从而减小温差应力,减少裂缝的产生。浇筑时据混凝土泵送产生的坡度,在混凝土卸点和坡角处布置振捣点,确保混凝土振实。因混凝土的流动性很大,泵送混凝土浇筑完毕之后,为消除混凝土表面裂缝,要在混凝土初凝之后、终凝之前进行二次振捣,提高混凝土防水性能。充分的振捣可以有效减少结构性裂缝。混凝土浇筑、振捣之后产生的泌水和浮浆要及时清除。
(2)在整个施工过程中要做好对温度的测量、控制工作。采用先进的测温装置做好温度记录,可以全面、准确的掌握大体积混凝土内部的实时温度变化,技术人员可以利用测量结果制定、实施相应的温控措施。
(3)重视大体积混凝土的养护工作,即混凝土的保温和保湿工作。技术人员应保证养护工作的连续性。
施工环节中,施工人员应严格按施工要求做好每个环节的工作:均匀搅拌混凝土并控制搅拌时间,混凝土浇筑工作应选择专业的施工人员,把握好每道工序之间的间隔时间,保证浇筑质量,按照规定的时间进行拆模工作。微小裂缝虽然不会对建筑的受力造成影响,但是对建筑的整体性和耐久性会产生一定的影响,是隐藏的安全隐患。施工人员在施工的各个环节要尽可能的控制裂缝的发展。
4.结语
在施工本工程的大体积混凝土时,要想解决好混凝土裂缝问题,就应该在设计、材料、施工等环节把好质量关。不过,大体积混凝土施工本身就是一个较为复杂的过程,混凝土的应用条件也比较复杂,裂缝问题总是在所难免的。不过,如果施工员在施工时严格遵守规范,正确选择施工工艺,并尽量做好相关的防范措施,那么就能最大程度的控制好大体积混凝土裂缝问题,进而确保本工程的施工质量。
篇8:铁路桥梁工程大体积混凝土裂缝成因及防治措施
铁路桥梁工程大体积混凝土裂缝成因及防治措施
本文分析了墩身混凝土的温输裂缝产生原因,并提出了控制裂缝的`对策,以保证铁路桥梁工程的质量.
作 者:徐辉 作者单位:中铁上海设计院集团公司,上海,71 刊 名:科技资讯 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期): “”(16) 分类号:U445.71 关键词:铁路桥梁 大体积混凝土 裂缝篇9:浅析大体积混凝土裂缝原因及控制措施
浅析大体积混凝土裂缝原因及控制措施
本文针对大体积混凝土的.特点,分析了大体积混凝土产生裂缝的原因和在花工过程及养护过程中如何采取措施保证混凝土不产生裂缝.
作 者:冯焕芹 作者单位:山东聊城建设学校 刊 名:科技信息 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期):2009 “”(12) 分类号:G64 关键词:大体积 混凝土 裂缝篇10:大体积混凝土温差收缩裂缝通论文
论文摘要:本文分析了高层建筑基础大体积混凝土产生温差、收缩裂缝的原因,并从监理的角度提出了控制有害裂缝的措施。
论文关键词:监理大体积混凝土裂缝控制措施
我国的大体积混凝土以往多用于水工结构,一般多采用水化热低的专用水泥――大坝水泥,混凝土强度等级也比较低。随着近十几年来高层建筑及超高层建筑的发展,其基础多采用箱基、筏基、复合基础等型式的大体积混凝土,尤其核心简基础承台体积较厚。高层建筑基础具有设计强度高、立方米混凝土水泥用量多、抗渗性能要求高等特点,由于水化热引起的混凝土内部温度较一般混凝土要大的多,因此高层建筑基础大体积混凝土防止温差、收缩裂缝的产生是施工单位及监理单位质量控制的重点之一。本文就上述裂缝问题分析了其发生的机理,并结合我们的监理实践,介绍一下所采取的对策。
篇11:大体积混凝土温差收缩裂缝通论文
大体积混凝土产生温差、收缩裂缝的主要原因有以下几点:
(1)水泥水化热引起的温度应力和温度变形。水泥在水化过程中产生大量的热量,使混凝土内部温度升高,因高层建筑基础大体积混凝土单方水泥用量多在400kg以上,1-3天放出的热量相当多,其内部最高温度可达70―80℃,夏季施工时会更高。当混凝土内部与表面温度过大时,就会产生温度应力和温度变形,当这种温度应力超过混凝土内外的约束时,就会产生裂缝;
(2)混凝土收缩与内外约束条件的影响。混凝土在凝结过程中产生收缩,由于受到下部地基的约束而产生拉应力,当拉应力超过混凝土的抗拉强度即产生垂直裂缝;另外,混凝土内部温度高,热膨胀大,因而中心产生压应力,表面产生拉应力,当拉应力超过混凝土抗拉强度值和钢筋的约束作用时,同样会产生裂缝。
篇12:大体积混凝土温差收缩裂缝通论文
为了消除大体积混凝土温差裂缝和收缩裂缝,我们针对其产生的机理,采取了以下的监理对策,并收到了良好的实践成效。
2.1.优化混凝土配合比,严格控制原材料的质量。大体积混凝土对原材料质量要求主要有:
(1)尽量选用水化热低和安定性好的水泥。目前高层建筑基础大体积混凝土多用矿渣水泥,所用水泥控制在出厂半月以上,以降低水泥的活性;
(2)石料要求含泥量不超过1%;(3)砂子选用中粗砂,含泥量不超过3%;
(4)粉煤灰要求品质好,采用一级灰,并严格控制烧失量及含硫量。
大体积混凝土多按60天强度设计,一般要求施工单位提前1个月甚至更早做配合比设计。配合比设计中:
(1)可掺入适量的粉煤灰,在保证强度的前提下尽可能减少水泥用量(对于采用矿渣水泥的大体积混凝土,粉煤灰混凝土应用技术规范GBJ146―90已将粉煤灰取代水泥的最大限量放宽到30%),降低水化热峰值及推迟水化热峰值的出现。通过做绝热温升试验,优选混凝土配合比;
(2)因施工面积较大,要求混凝土保水性能好,另外要求坍落度不但要保证泵送要求,同时也要保证混凝土流淌距离不能过长,以免分层施工衔接不上,形成冷缝。浇灌时混凝土坍落度一般控制在15―18cm左右,若粉煤灰掺量大,则坍落度可适当减小;
(3)根据分层一次浇筑的最大方量、混凝土供料能力和运输时间,确定混凝土要求的初凝时间,保证分层衔接时混凝土不至初凝;
4)结合抗渗要求,掺入一定量的抗渗防裂剂,使混凝土的收缩得以补偿,减小收缩应力。
2.2.慎选施工方案,抓好施工准备工作。大体积混凝土施工前,施工单位必须制订出详细的施工方案;现场监理组要针对本工程实际情况制订出监理细则。在正式开盘浇捣前,监理工程师必须检查单位在技术上、组织上的落实情况:
(1)去商品混凝土厂家考察(大城市多采用商品混凝土),检查原材料储备情况,生产设备的运行情况及供料能力等;
(2)审查温度及温度应力的计算,要求大体积混凝土内外温度不超过25℃;
(3)核实混凝土的试配结果是否满足设计和施工要求;
(4)检查现场机械设备的配置,泵管的布置及阻力计算的合理性;
(5)注意预埋件及预留孔洞是否齐全;
(6)检查现场有无备用发电机;
(7)核实近期的'气象情况;
(8)督促施工单位落实管理人员及施工人员的组织安排;
(9)检查抗渗、抗压试模是否备齐。
2.3.浇筑过程中的质量监理。在一切准备就绪后,总监理工程师签署开灌令,正式开始浇筑混凝土。浇筑过程中,监理人员进行全过程旁站监理,及时纠正一些不规范的操作。
旁站监理时,主要注意以下几点:
(1)浇筑混凝土前先浇一层砂浆,以减小下部地基对上部混凝土的约束;
(2)浇筑过程中随时去商品混凝土厂家检查配料是否按配合比进行;
(3)运输出现异常要及督促施工单位与厂家联系;
(4)出现堵管,要协助施工单位分析原因,尽快排除,避免因拖得过久,形成冷缝;
(5)督促施工人员分层浇捣,严格控制分层厚度,及时移动泵管;
(6)加强钢筋密集部位的振捣;
(7)检查水平施工缝处理是否按方案要求进行,督促施工人员及时压实、拉毛;
(8)督促施工单位按规范要求留设试块。
2.4重视养护环节的监理,保证养护工作的质量。
大体积混凝土的养护工作是很关键的,而这一点往往被施工单位所忽视。大体积混凝土根据强度等级、现场条件及施工季节合理选用养护措施,高层建筑基础多采用覆盖保温保湿养护。混凝土初凝后要及时覆盖,要求覆盖必须严密,不能出现混凝土外露现象,覆盖层厚度由温度计算确定。混凝土内部预埋热电偶或预埋钢管测温,测温点被覆盖12小时后即开始测温,监理人员要督促施工单位及时测温,密切注意各点温度变化情况,一旦内外温差超过25℃,督促施工单位及时加强保温措施。对于掺粉煤灰混凝土,当覆盖层拆除后,仍必须浇水保湿养护至14天以上。
3.结束语
大体积混凝土的施工要早作准备,研究制订可靠、可行的施工方案。监理工程师要认真组织协调,取得各方的支持和配合,在此过程中要真正发挥“监帮结合”的作用,协助施工方解决一些技术难点,提醒施工方注意容易忽视而又不可忽视的环节。这样,大体积混凝土温差、收缩裂缝的出现是可以避免的。
参考文献:
[1]俞静,朱平华,蒋沧如。论高层建筑基础大体积混凝土水化放热规律[J].国外建材科技,,25(3);
[2]刘俊贤:《大体积混凝土施工控制措施》,《施工技术》,,36(7);
[3]郑亚峰,刘雪燕等。大体积混凝土温度裂缝与控制[J]。低温建筑技术,(2)。
篇13:大体积混凝土基础施工裂缝成因论文
大体积混凝土基础施工裂缝成因论文
关键词:混凝土早期裂缝类型产生原因
摘要:本文对混凝土早期裂缝的类型及成因,结合实际工程进行了阐述。通过分析施工工艺、外界环境、材料质量,明确了出现裂缝的因素,为预防大体积混凝土基础施工裂缝的产生进行有效控制,以更好的保证施工质量。
混凝土结构裂缝的成因复杂繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因。据有关资料统计[1],由施工因素造成的混凝土早期裂缝占80%左右,因混凝土材料方面的原因造成的的裂缝占15%左右。基于此,笔者撰文就以上所说的几个方面分析识别,使施工系统始终处于控制之中。
1施工工艺因素
在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装的过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、竖向的、斜向的、水平的、表面的、贯穿的等各种裂缝,特别是细长薄壁结构更容易出现。裂缝出现的部位与走向、裂缝宽度因产生的原因而异,通常有:
(1)振捣方式不当引起裂缝
不正确的振捣方式会造成混凝土分层离析、表面浮浆而使混凝土面层开裂,或造成混凝土砂浆大量向低处流淌致使混凝土产生不均匀沉降收缩而在结构厚薄交界处出现裂缝。
商品混凝土由于采用搅拌车运输、泵送浇筑,混凝土坍落度比较大,凝结时间比较长,一般混凝土初凝时间都在10h以上甚至更长,即使在炎热的夏天,在掺了高效缓凝减水剂后,浇捣好的混凝土表面被太阳暴晒,水分蒸发很快,形成一层几毫米厚的“被子”,看上去混凝土似乎已凝结,实际内部还远未达到初凝,甚至还能流动。曾多次用贯入阻力仪测定掺了高效缓凝减水剂的混凝土砂浆在太阳直晒之下的凝结时间,结果初凝时间都在12~16h。这样的混凝土若不进行二次振捣和多次抹面,混凝土表面不可避免会出现裂缝。
(2)养护不当引起混凝土开裂
现场养护不当是造成混凝土收缩开裂最主要的原因。混凝土浇筑后,若表面不及时覆盖进行潮湿养护,表面水分迅速蒸发,很容易产生收缩裂缝、特别是在气温高、相对湿度低、风速大的情况下,干缩更容易发生。有资料表明,当风速为16m/s时,混凝土中的水分蒸发速度是无风时的四倍。
对于高性能混凝土,由于水灰比小,胶凝材料用量大,混凝土密实性好,泌水少,若保养不好,干缩情况更为严重。对于保湿养护的时间,肯定是越长越好[2]。养护14天的混凝士的收缩比只养护3天的收缩降低约20%。但由于工程工期的制约,绝大多数施工人员做不到,所以混凝土出现干缩裂缝就在所难免了。
2外界环境因素
(1)温度
大体积混凝土施工阶段所产生的温度裂缝,是其内部矛盾发展的结果。一方面是混凝土由于内外温差而产生应力与应变,另一方面是混凝土本身的强度和抵抗变形的能力。混凝土内部温度变化产生变形受到混凝土内部和外部的约束后,将产生很大应力。当这种应力超过了混凝土可以承受的抗拉强度时,就会产生裂缝。
水泥水化过程是大体积混凝土中的主要温度因素。混凝土在硬结过程中,由于水泥的水化作用,在初始几天产生大量的水化热,混凝土温度升高。而大体积混凝土结构一般较厚,导热不良,相对散热小,所以大量的热量聚集在结构内部。当温度梯度大到一定程度时,表面拉应力超过混凝土的极限抗拉强度时,混凝土表面产生裂缝。在升温阶段,混凝土未充分硬化,弹性模量小,因此拉应力较小,只引起混凝土表面裂缝。
不同于混凝土浇筑阶段水化热所引起的温度荷载,自然环境条件变化引起的温度荷载极不稳定,也更难控制。就混凝土工程结构而言,山于自然环境条件变化所产生的温度荷载,一般可分为以下三种类型:
①日照温度荷载;
②骤然降温温度荷载;
③年温温度荷载。日照温度荷载主要是太阳辐射作用所致,还有气温变化和风速影响,在实际应用中可简化为只考虑太阳辐射和气温变化这两种因素。降温温度变化主要是由强冷空气的侵袭作用和日落或在夜间形成的内高外低的温度分布,一般只考虑气温变化和风速的影响。
(2)钢筋锈蚀因素
由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长了约2~4倍[3],从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。 3材料质量因素
混凝土是指由水泥、石灰、石膏类无机胶结料和水或沥青、树脂等有机胶结料的胶状物与集料按一定比例拌和,并在一定条件下硬化而成的.石材。通常我们所讲的混凝土指的是水泥混凝土,主要由水泥、水、砂石集料组成,其中水泥和水起胶凝作用[4],集料起骨架填充作用,水泥和水发生反应后形成坚硬的水泥石,将集料颗粒牢固地粘结成整体,使混凝土具有一定的强度。
但是若组成混凝土所用的材料质量不合格,则会影响混凝土的强度,导致混凝土结构出现裂缝。
(1)水泥
水泥出厂时强度不足,水泥过期或受潮,可导致混凝土强度不足,从而引起混凝土开裂。
当水泥中含碱超过了一定的量(如0。6%),同时又使用了含有碱活性的骨料,可能产生碱骨料反应。
水泥安定性不合格,水泥中游离的氧化钙含量超标。氧化钙在凝结过程中水化很慢,在谁泥混凝土凝结后仍然继续起水化作用,可破坏已硬化的水泥石,使混凝上抗拉强度下降。
(2)砂、石骨料
砂石粒径太小、级配不良、孔隙率大,将导致水泥和拌和水用量增大,影响混凝土的强度,使混凝土的收缩加大,如果使用超出规定的特细砂,后果更严重。砂石中通常含有各种有害物质,如云母、泥土、有机物、硫酸盐与硫化物等。这些物质一定程度上降低了集料与水泥石的粘附性。
4结语
文章讨论了大体积混凝土基础施工中施工工艺因素,外界环境因素,材料质量因素。通过分析裂缝因素,明确了大体积混凝土基础施工裂缝成因。由此我们就可以有针对性地控制裂缝的方法,以保证施工的质量。
参考文献:
[1]李国泮、马贞勇[译].混凝土性能[M].北京:中国建筑工业出版社1983,12.
[2]叶琳昌、沈义.大体积混凝土施工[J].北京,中国建筑工业出版社,1987,1―3.
[3]申爱琴.水泥与水泥混凝土[M].北京:人民交通出版社,,5
[4]建筑施工手册[M]。第三版,中国建筑工业出版社,。
[5]吴自钦。浅析大体积混凝土防裂问题[J]。科技创新导报,2008,11:20。
[6]林亦赏。浅谈大体积混凝土的施工技术[J]。科技创新导报,2008,06:37。
篇14:大体积混凝土裂缝控制技术工学论文
大体积混凝土由于水泥凝结硬化过程中释放出大量的水化热,形成较大的内外温差,当温差较大超过25℃时,混凝土内部的温度应力有可能超过混凝土的极限抗拉强度从而产生温度裂缝,同时混凝土降温阶段如果降温过快,由于厚板收缩,又受到强大的摩阻力,可能导致收缩贯穿裂缝。
此外,混凝土本身的收缩也可能造成裂缝的产生。因此大体积混凝土存在的主要问题是裂缝的控制。
目前国内对于大体积混凝土尚无一个明确的定义。日本建筑学会(JASS5)中规定:结构断面最小尺寸在80 cm以上,同时水化热引起混凝土内的最高温度与外界气温之差,预计超过25℃的混凝土,称之为大体积混凝土。我国有的规范认为,当基础边长大于2 0m,厚度大于1 m,体积大干400m3时称大体积混凝土;有的则认为混凝土结构物实体最小尺寸等于或大于1 m,或预计会因水泥水化热引起混凝土内外温差过大,导致裂缝的混凝土为大体积混凝土。
大体积混凝土的主要类型目前主要根据混凝土的种类和要求的性能进行分类。按照混凝土种类主要分为不含钢筋的素混凝土、含钢筋的钢筋混凝土或掺入钢纤维的钢纤维混凝土,按照要求的性能主要分为干硬性混凝土、低流态混凝土、高流态混凝土和常态混凝土等。
大体积混凝土的特点为大体积混凝土结构厚、体形大、钢筋密、一次浇注量大、施工时间长、施工工艺要求高、受环境影响大,浇注完毕后,由于体积过大,造成混凝土水化热大,温度场梯度大,混凝土“内热外冷”极易产生裂缝。工程实践证明,大体积混凝土施工难度比较大,混凝土产生裂缝的机率较多。
一、大体积混凝土裂缝的主要类型
1 干缩裂缝
混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、集料的性质和用量、外加剂的用量等有关。是混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。
2 塑性收缩裂缝
塑性收缩裂缝一般在于热或大风天气出现,裂缝多呈中间宽、两端细,且长短不一,互不连贯状态。常发生在混凝土板或表面积较大的墙面上,较短的裂缝一般长20-30cm,较长的裂缝可达2-3m,宽1~5mm。从外观分为无规则网络状和稍有规则的斜纹状或反映出混凝土布筋情况和混凝土构件截面变化等规则的形状,深度一般3~1 0 cm,通常延伸不到混凝土板的边缘。
3 沉陷裂缝
沉陷裂缝的产生是由于结构地基土质不匀、松软,或回填土不实或浸水而造成不均匀沉降所致。或者因为模板刚度不足,模板支撑间距过大或支撑底部松动等导致混凝土出现沉陷裂缝。特别是在冬季,模板支撑在冻土上,冻土化冻后产生不均匀沉降,致使混凝土结构产生裂缝。
4 温度裂缝
温度裂缝多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。混凝土浇注后,在硬化过程中,水泥水化产生大量的水化热。由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升。而混凝土表面散热较快,这样就形成内外的较大温差。较大的温差造成混凝土内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。
二、大体积混凝土裂缝的材料控制技术
1 水泥的合理选取
优先选用收缩小的或具有微膨胀性的水泥。因为这种水泥在水化膨胀期(1~5 d)可产生一定的预压应力,而在水化后期预压应力部分抵消温度徐变应力,减少混凝土内的拉应力,提高混凝土的抗裂能力。水泥强度等级为32.5或42.5级。
2 骨料的合理选取
选择线膨胀系数小、岩石弹性模量低、表面清洁无弱包裹层、级配良好的骨料,这样可以获得较小的空隙率及表面积,从而减少水泥的用量,降低水化热,减少干缩,减小了混凝土裂缝的开展。砂宜选用粗砂或中砂,含泥量小于等于3%;石子为0.5―3.2mm粒径的碎石或卵石均可。
3 尽可能减少水的用量
水对混凝土具有双重作用,水化反应离不开水的存在,但多余水贮存于混凝土体内,不仅会对混凝土的凝胶体结构和骨料与凝胶体间的界面过度区相的结构发展带来影响,而且一旦这些水分损失后,凝胶体体积会收缩,如果收缩产生的内应力超过界面过度区相的抗力,就有可能在此界面区产生微裂缝,降低混凝土内部抵抗拉应力的能力。再者,大体积混凝土一般强度都不是很高。
4 外加剂选用木质素磺酸钙,根据气温调整其掺量,气温高时,掺量较大,气温低是掺量减少,夏季掺量为水泥用量的0.35%,冬季掺量为水泥用量的0.2%,春秋季掺量为水泥用量的0.25 %。
三、混凝土凝结硬化过程的控制
宏观上,硬化混凝土在约束条件下,收缩变形会产生弹性拉应力,拉应力的近似值最初可假定为杨氏模量和变形的乘积,当诱导拉应力超过混凝土的抗拉强度时,混凝土材料就会开裂。但事实上,由于混凝土是一种兼具粘性和延展性(徐变)的复杂相组成的非均质材料,一些应力被徐变松弛所释放,混凝土是否产生裂缝是徐变应力松弛后的残余应力所决定。
混凝土振捣完毕应随即覆盖,最好用塑料布密封养护,防止混凝土脱水龟裂。加盖保温材料能有效控制因温差应力而产生的裂缝。保温材料的撤出时间应以混凝土内部和表面温差以及表面和大气的温差均小于25℃为准。一般混凝土浇筑完毕,第三、四天为升温的.高峰,其后逐渐降温,保温材料的拆除以10天以上为宜,降温速度不宜过快,以防温差应力产生裂缝。
在施工中,应随时掌握混凝土的温差动态,测温工作至关重要。可采用在混凝土内部不同的部位埋设铜热传感器进行测温,同时还配合使用普通玻璃棒式温度计进行校验,发现温差有超过2 5℃的趋势时,应及时加强保温或减缓拆除保温材料,以防止产生混凝土温差应力裂缝。
四、外加剂与掺合材料的控制
1 粉煤灰
混凝土中掺用粉煤灰后,可提高混凝土的抗渗性、耐久性,减少收缩,降低胶凝材料体系的水化热,提高混凝土的抗拉强度,抑制碱集料反应,减少新拌混凝土的泌水等。这些诸多好处均将有利于提高混凝土的抗裂性能。但是同时会显着降低混凝土的早期强度,对抗裂不利。试验表明,当粉煤灰取代率超过20%时,对混凝土早期强度影响较大,对于抗裂尤其不利。
2 硅粉
(1)抗冻性:微硅粉在经过300-500次快速冻解循环,相对弹性模量隆低10~20%,而普通混凝土通过25-50次循环,相对弹性模量隆低为30~73%(2)早强性:微硅粉混凝土使诱导期缩短,具有早强的特性。(3)抗冲磨、控空蚀性:微硅粉混凝土比普通混凝土抗冲磨能力提高0.5―2.5倍,抗空蚀能力提高3~16倍。
3 减水剂
缓凝高效减水剂能够提高混凝土的抗拉强度,并对减少混凝土单位用水量和胶凝材料用量,改善新拌混凝土的工作度,提高硬化混凝土的力学、热学、变形等性能起着极为重要的作用。
4 引气剂
引气剂除了能显着提高混凝土抗冻融循环和抗侵蚀环境的能力外,能显着降低新拌混凝土的泌水,提高混凝土的工作度,降低混凝土的弹性模量,优化混凝土体内微观结构,提高混凝土的抗冻性能。
五、防止大体积混凝土结构裂缝的结构措施
包括合理分段,设置后浇带,合理配置钢筋,设置滑动层,设置缓冲层,设置应力缓和沟,对空洞周边、变截面、转交部位采取构造配筋措施。
大体积混凝土结构裂缝的发生是由多种因素引起的。各类裂缝产生的主要影响因素有几种:一是结构型裂缝,由外荷载引起的。二是材料型裂缝,主要由温度应力和混凝土的收缩引起的。目前控制和解决的重点是温度应力引起的混凝土裂缝。
★ 混凝土裂缝论文
【大体积混凝土裂缝分析及措施论文(共14篇)】相关文章:
探究水利水电工程建筑中混凝土防渗墙施工技术论文2022-04-29
工程项目大型设备安装管控要点探讨论文2023-02-21
建筑鉴定中混凝土抗压强度推定方法的探讨论文2022-12-06
浅析桥梁施工中裂缝产生的原因及其对策2022-10-23
建筑施工中幕墙施工技术的具体应用的论文2023-04-09
高层混凝土结构中主要受力部位的裂缝分析及控制要点有哪些?2023-09-26
浅谈土建工程设计和施工阶段裂缝的防治论文2023-08-11
土木工程施工论文2022-08-26
评中级职称论文2024-04-23
混凝土裂缝在小浪底水利枢纽洞室衬砌工程中的应用论文2022-09-13