隧道抗震设计研讨论文(通用14篇)由网友“zhongkai”投稿提供,下面小编给大家整理后的隧道抗震设计研讨论文,欢迎阅读与借鉴!
篇1:隧道抗震设计研讨论文
隧道抗震设计研讨论文
北京地铁10号线车站的工程背景,引用相关文献提出的刚度折减理论,探索对结构损伤缺陷的简化描述;同时基于数值模拟仿真,研究其在不同运营阶段的地震动力响应规律。目的是为了揭示地铁隧道在疲劳损伤积累作用下的抗震动力学机理,并为进一步合理地改进和优化地铁隧道等地下结构的设计和施工、地下结构抗震设计规范的制定提供一定的参考依据。
初始损伤缺陷的描述与长期累积效应表达
根据相关的试验及文献研究,在长期的荷载及环境腐蚀等作用下,结构的劣化过程是由于诸如微裂缝、微孔洞等这样的初始损伤缺陷随运营时间的增加在不断发展,最后导致结构失效。事实上,对于既有地铁隧道而言,引起结构初始损伤缺陷的因素是多方面的,初始损伤缺陷的定义也是多方面的。例如,可以定义为施工质量方面导致的初始缺陷、工后运营过程中由于沉降导致的初始缺陷以及受邻近或穿越施工影响带来的初始缺陷等等。为了保证隧道结构在运营期间的安全,地铁隧道结构在长期运营动载作用下随时间的动力响应及初始缺陷的演变机理在不断得到人们的关注,尤其是初始缺陷长期累积作用下结构的抗震动力学行为。这里不妨采用前人文献试验研究,采用刚度折减理论来体现隧道结构衬砌初始缺陷及其在列车不同运营阶段的抗震动力特性。
力学模型与计算参数
1工程背景
本文以10号线双井车站由于列车振动所引起的隧道衬砌结构的动力响应为研究背景。10号线双井站为地下三层两跨(局部三跨)岛式站台车站,全长181.0m。车站地下一层为设备层,地下二层为站厅层,地下三层为站台层。车站南、北两段为地下三层明挖结构,中间段为地下一层暗挖结构。在图1中可以看出,北侧三层结构与中间暗挖段及中间暗挖段与南侧三层结构之间均有宽20mm的变形缝。由于变形缝的存在,因此,构想以变形缝为界,只考虑对双井站中间暗挖段结构衬砌进行动力响应分析。此举目的在于,变形缝起着减振的作用,三段结构彼此振动影响不大;建立模型时能使计算单元的数量大大减少,即提高了计算运行速度,又能得到较理想的计算精度。
2基于FLAC3D地震响应的三维模型的建立
考虑到边界效应和地下结构开挖所影响的范围,整体模型截取范围为61.3m×59.24m×41.55m的土体。网格大小划分满足Kuhlemeyer和Lysmer通过模型的波传播精度的表达式,就是单元的空间尺寸ΔL,必须小于与输入波的最大频率相应的波长的1/8~1/10。10号线双井站模型示意图如图2所示。
3模型边界条件及计算参数的确定
根据北京地铁10号线双井站的地质资料,将土体视为均匀介质,并取土性参数的加权平均值作为计算参数。计算中采用不同的本构模型模拟不同的材料,对于各层土体采用莫尔-库仑(M-C)本构模型,隧道衬砌应用线弹性本构模型。衬砌混凝土力学参数如下:密度为2.5g/cm3,剪切模量为15.28GPa,体积模量为11.46GPa。静力计算时,模型四周分别约束相应的水平向位移,底部为竖向固定、水平自由的边界,上表面为自由边界。在设置动力边界条件及阻尼前,应将静力计算模型中的初始位移及初始速度设置为0。动力计算时,在模型四周边界上施加自由场边界条件,底部边界取为静态边界,上表面为自由边界。模型采用瑞丽阻尼机制,使用时需要考虑两个参数,即自振频率和阻尼比。自振频率的确定是使模型不设置阻尼,在重力作用下求解一定的步数,使模型产生振荡,分析模型关键节点响应,使其完成至少一个周期振荡。本文求解的振荡周期为0.09s,由此计算出自振频率为11.11Hz。阻尼比的确定是根据经验方法,选取岩土体的阻尼比参数为0.005。
4地震波的选择
因工程建筑场地类别为Ⅱ类,且北京按8度设防,所以本文采用比较著名的埃尔森特(EICEN-TRO)波,截取包括峰值加速度在内的5s段进行分析,峰值加速度为1.96m/s2,满足建设部颁发的《关于统一抗震设计规范地面运动加速度设计取值的通知》规定的8度设防取0.2m/s2加速度峰值的要求。由于输入的EI波为频率范围很广的离散载荷形式,因此在地震反应分析中对EI波中的高频波进行滤波处理,以提高计算精度。图3为滤波前后加速度时程曲线的对比图。本文采用地震过程中对结构破坏最大的横波(X方向传播)和纵波(Z方向传播)共同作用于地下结构进行抗震性能研究。依据抗震设计规范中规定的水平向地震荷载设计谱乘以某一固定系数作为竖向设计抗震的说明,本文取竖向设计荷载为水平向的2/3。
地震动力响应分析
考虑在不同阶段下的3种工况对地铁车站结构进行抗震性能分析。在大量隧道震害调查中,发现隧道拱顶、拱肩及仰拱位置为薄弱部位,因此选取地铁结构衬砌的拱顶、拱肩和仰拱的X,Z方向位移和应力进行全程监测,研究在地震荷载作用下各运营阶段的位移、大小主应力的时程曲线规律。
1位移时程分析
采用刚度折减理论对不同运营阶段的隧道结构进行动力响应数值分析,部分结果如图4~图6所示。数值结果表明,隧道结构各控制点的位移波动趋势具有极大的相似性,说明了隧道结构在地震动力作用下的整体性;位移曲线和地震波的波形基本一致,因此时程曲线主要取决于输入地震波的特性;各控制点的竖向位移比水平位移要小,这是因为输入的竖向地震动加速度小于水平地震动,并且竖向变形受到土体及结构自重的约束较为明显;在3种不同刚度下,各控制点的位移均呈现出随刚度的减小反而增大的趋势,如在水平地震作用下,100%刚度下控制点(拱顶)的'位移最大值为0.151m,80%刚度下变为0.154m,65%刚度下为0.157m,较100%刚度分别增大了1.9%和3.9%,这说明经长期损伤积累致使隧道衬砌刚度减小,增加了隧道变形破坏的风险。
2应力时程分析
在地震动力响应作用下,可以得到不同刚度条件下隧道结构在列车不同运营阶段的大小主应力时程效应,部分结果如图7和图8所示。数值结果表明,在列车运营不同阶段即不同刚度下应力时程曲线呈现出随刚度的减小而随之减小,但各控制点时程曲线趋势一致,可见,刚度变化与其曲线变化趋势无关。其中在80%刚度及65%刚度时拱肩的最大主应力分别较100%刚度下降了9%和15%,而最小主应力分别下降了4.7%和9.9%;仰拱的最大主应力分别较100%刚度下降了1.6%和5%,对应的最小主应力分别下降了2.9%和6.7%;拱顶的最大主应力分别较100%刚度下降了8.3%和18.6%,同时最小主应力分别下降了4.4%和8.7%。可见,各控制点随着刚度的减小而出现不同程度的内力衰减,最大主应力及最小主应力均为负值,说明各控制点以压应力的形式出现;柱顶随刚度的衰减其表现形式最明显,主应力时程曲线随着刚度的衰减均比其余控制点应力时程曲线差异明显,说明刚度的大小对柱顶的内力影响最大;从大小主应力的表现看,仰拱所承受的内力应是最大的,因此此处是车站在地震作用下易出现应力集中导致破坏的位置,应进行注浆加固等处理措施,使其与自身结构刚度相匹配,提高抗震能力。
3塑性区分析
在静载或者动载激励作用下,车站结构周围土体破坏导致其所受影响最为直观的表现为土体产生下陷、震陷、隆起表错、甚至塌方等现象,在数值模拟计算中较为直观地表现出其周边土体破坏程度大小的为该模型的塑性区大小。其中图9中none表示始终处于弹性状态;shear-p表示弹性,但之前曾剪切破坏;shear-n表示正在剪切破坏。在车站结构3种运营阶段状态下即3种不同刚度下车站结构受震后周围土体的塑性区分布模型图如图9所示。由图9可知,车站结构周边土体出现了不同程度剪切破坏,并且主要发生在车站结构周边及地面附近区域;在3种不同刚度下,其车站周边土体塑性区随着刚度的减小而减小。这说明隧道衬砌刚度越小,则与其周边土体的刚度越加匹配,两者产生了相对变形,使其更难到达塑性变形。也就是说,隧道衬砌因刚度的减小而产生变形增大,增加了其变形破坏的程度
结语
采用FLAC3D对隧道结构在不同运营阶段的地震动力响应进行数值模拟,初步得到以下结论。(1)隧道结构各控制点的位移波动趋势具有极大的相似性,隧道结构在地震动力作用下具有整体性,时程曲线主要取决于输入地震波的特性,在3种刚度作用下,其位移时程曲线随着刚度的减小而响应值却增大。这说明随着刚度的减小,衬砌结构在控制变形方面是不利的,增加了变形破坏的风险。(2)各控制点的大小主应力时程曲线均呈现出随刚度的减小而随之减小的变化,因为刚度减小即柔度增加,使其结构内力变小,但需结合静力变形条件,否则就会出现局部应力集中,导致发生破坏。隧道仰拱位置为地震作用下容易导致破坏的位置,应进行注浆加固等处理措施,使其与自身结构刚度相匹配,提高抗震能力;柱顶随刚度的衰减其表现形式最明显,说明刚度的变化对柱顶影响最大。(3)隧道周边土体易发生剪切破坏,其塑性区分布随着刚度的减小而减小。这说明地下结构中土体与结构是整体运动的,隧道衬砌刚度越小,则与其周边土体的刚度越加匹配,两者产生了相对变形,使其更难到达塑性变形,隧道衬砌因刚度的减小而变形增大,增加了其变形破坏的程度。
篇2:结构抗震概念设计论文
结构抗震概念设计论文
一、结构抗震概念设计的提出原因及必要性
每栋建筑物都是一个空间结构体,在荷载作用下各构件并非是以脱离体系的单一构件独自工作,而是以相当复杂的方式共同工作,精确计算其作用和受力是相当困难的,在计算地震作用时尤其如此,由于地震作用下的结构构件受力状态的复杂性及不确定性、人们对地震时结构响应认识的局限性和模糊性、理论计算中的假定与实际情况的差异性,注定了在现阶段无论计算工具再如何发展,计算过程再如何严格,其结果也只能是一种比较粗略的估计,甚至有时还根本无法计算。
显然在结构设计中,仅依靠现有理论进行抗震计算往往不能满足结构安全性、可靠性的要求,无法达到预期的设计目标。因此在不确定因素众多,受力状况复杂的结构抗震设计中,抗震概念设计的提出和应用就显得尤为重要了。
二、结构抗震概念设计的涵义
所谓抗震概念设计,一般是指不经过计算,尤其在难以做出精确理性分析或在规范中难以规定的问题中,依据整体结构体系与分结构体系之间的力学关系、结构破坏机理、震害、实验现象和工程经验中所获得的基本设计原则和设计思想,从总体的角度来进行建筑结构的总体布置和抗震细部措施的宏观控制,从而从根本上保证结构的抗震性能。
三、结构抗震概念设计的基本原则和具体要求
(一)建筑场地的选择
地震造成建筑的破坏,除地震动直接引起结构破坏以外,还有场地条件的原因,诸如:地震引起的地表错动与地裂,地基土的不均匀沉陷、滑坡和土体液化等。因此选择有利于抗震的建筑场地是减轻建筑物地震灾害的第一道重要工序。
(二)建筑物的平面、立面及竖向剖面的布置建筑物平面和立面的规则性是抗震概念设计中需要考虑的一个重要因素。
规则的建筑方案体现在:建筑物的平面布置基本对称;结构体型简单;抗侧力体系的刚度和承载力上下变化连续、均匀。因为,简单、对称的结构容易估算其在地震时的反应,容易有针对性的采取抗震措施并对其进行细部处理。因此,这就要求建筑专业的设计人员具有一定的抗震知识素养,应该对所设计的建筑的抗震性能有所估计,避免采用抗震性能差的严重不规则的设计方案。
(三)结构体系的确定和结构布置
结构体系的.确定是结构设计中头等重要的大事。结构设计时应通过综合分析使结构体系尽量合理且经济,应优先采用抗震能力强、延性好、耗能能力强、便于施工且具有多道防线的结构体系(如框架-剪力墙结构,框架-筒体结构,设置耗能连梁的剪力墙结构等),避免采用抗震能力较低的结构体系(如板柱-剪力墙结构,单跨框架结构等),尤其应避免采用看似“合法”(符合规范)但不合理的结构体系(如当房屋高度接近规范框架结构类适用高度上限时,仍采用框架结构,震害表明,框架结构的侧向刚度较小,整体性较差,结构的抗震性能较差,此情况下应采用抗震性能较好的框架-剪力墙结构为宜)。
而在结构布置时,应采用概念清晰、传力途径明确的布置方式,尽量避免造成结构扭转、平面和立面的里出外进、竖向传力杆件的间断与不连续等问题。
(四)多道抗震防线的设置
单一结构体系只有一道抗震防线,一旦破坏就会造成建筑物倒塌的严重后果。特别是当建筑物的自振周期与地震动卓越周期相近时,建筑物由此而发生的共振,更加速其倒塌进程。而如果建筑物采用的是多重抗侧力体系时,第一道防线的抗侧力构件在 当第一道抗侧力防线因共振而破坏,第二道防线接替工作,建筑物自振周期将出现较大幅度的变动,与地震动卓越周期错开,使建筑物的共振现象得以缓解,避免再度严重破坏。在双重结构体系中一般应优先选择不负担或少负担重力荷载的竖向支撑或填充墙,或轴压比值较小的抗震墙、实墙筒体等构件作为第一道防线的抗侧力构件,如框架-剪力墙结构中的剪力墙,框架-填充墙结构中的填充墙,单层厂房纵向体系中的柱间支撑,均可作为各自体系中的第一道抗震防线。如因条件限制,只能采用单一的框架体系,则框架就成为整个体系中唯一的抗侧力构件,此时应采用“强柱弱梁”型的延性框架。
在地震作用下,框架梁成为第一道抗震防线,框架柱为第二道抗震防线,用框架梁的变形去消耗地震能量,使框架梁的屈服先于框架柱的屈服,从而保护了框架柱的相对完整,最终达到“大震不倒”的要求。
(五)结构抗震设计关键点的把握
在结构抗震概念设计中,还应注重对结构体系中的关键部位(如薄弱层,加强层等)、关键部位中的关键构件(如加强层的重要竖向构件、转换层的水平转换构件等)、关键构件中的关键节点(如梁柱节点,柱根部位等)几个关键点的把握,从而实现“强柱弱梁、强剪弱弯、强节点强锚固、强柱根弱杆件”的设计理念。
结构抗震概念设计不是拒绝进行复杂结构设计,而是要求在处理复杂结构设计时明确:什么是结构设计的最佳选择?采用不合理的结构方案或结构布置可能会带来什么样的后果?需要采取哪些补救或加强措施,并对这些措施的合理性和有效性做出客观的评价,以保证结构性能目标的实现,确保房屋安全。结构抗震概念设计不是指手画脚的空洞说教,而是具有丰富内涵的实实在在的工作。
篇3:建筑结构抗震设计讨论论文
关于建筑结构抗震设计讨论论文
【摘要】近年来,人们对建筑的安全性与质量标准越来越高,而建筑行业技术通过不断革新,技术水平不断提升,使得建筑工程质量已得到大幅提升。通过总结近二十年地震易发区及已发区的建筑结构设计特征与效果,总结出本文,做出了建筑结构抗震设计的四大思想理念,并提出了几项重要的针对建筑结构抗震设计的措施。
【关键词】建筑结构;抗震;设计;问题
建筑行业发展步伐紧紧跟随着城镇化发展愈来愈快的脚步。受到不同区域限制,及自然灾害的产生,使得建筑结构抗震设计成为建筑设计中一项不得或缺的设计任务,从保证建筑的安全性出发,为人身安全做出了保障。那么如何对建筑结构的抗震效果做出合理设计,需要考虑到什么?对抗震设计需要采取什么具体措施?本文将对以上问题进行探讨与解决。
1.建筑结构抗震设计的思想
1.1与不利区域相互避开
施工选区对建筑结构抗震能力有着至关重要的影响。再好的设计更需要有一个好的根基,建筑物的构建,需要避开地质状况不佳、地震低发区域,从而从根基上保证建筑地基能够坚实稳固。当地震灾害发生时,直接破坏的是建筑结构。如有特殊情况,无法避开不利建筑区域,这时必须使用特殊方式适当解决对应问题,并在建筑结构的构建设计上,需要对抗震能力大幅提升。所以选择一个最佳建筑建设区域,能够从根本上提高抗震性能。
1.2建筑外形设计
根据统计得出,建筑构件截面及平立面更容易突变,发生地震应力,引发地震灾害。当今时代,许多建筑设计师更注重通过建筑外形的设计稳定抗震性,设计师清楚地明白:①建筑设计注重整体性。建筑的整体性强,才能保持“传力通道”通畅,保证抗震能力强;②建筑结构遵循规则性。建筑结构不规则时,需要通过加倍地震产生的作用力与内力来重新计算建筑受力,调整设计;③设计方案的重要性。方案是否合理,直接影响着整个工程的耗材与建筑的安全性。
1.3协调设计
如何把控建筑结构的抗震效果?不仅需要的是对平立面设计的规则与对称,更需要的是建筑构造设计师与建筑工程工程师之间的协调与配合。建筑构造设计师与建筑工程工程师不仅要各司其职地完成设计与分析工作,还需要通过沟通交流,完成配合,对建筑结构的抗震设计进行调整,最终达到建筑结构规则要求与抗震设计标准。
1.4确定结构体系
当确定建筑结构后,需要选择并确定合适的结构体系。建筑结构体系的选择与确定,抗震设计中的建筑实际条件(建筑区域地质、地基深浅、建筑材料、建筑高度等)、抗震类别等决定了建筑结构体系的选择,再通过各体系间经济、技术等对比,可确定最终的建筑结构体系。确定结构体系对抗震整体分析有着不可替代的重要作用。拥有地震传递与作用途径、计算简图,能够把控地震的作用力并分析出作用力的传递方向,达到预防地震来袭并在一定程度地避免了对建筑物迫害的作用。
2.建筑结构抗震构造的关键措施
要提升建筑结构的`抗震效果,必须要采取一定的构建措施。本文介绍了:设置防震缝、增设构造柱、设置圈梁三种防控地震的构建建筑的措施。具体措施介绍如下。
2.1设置防震缝
在抗震地区,建筑物立面高差≥6m、建筑物有错层、楼板间错层高度差很大、或是建筑物各组件间硬度或重量差距过大时,需要设置防震缝。防震缝的作用就是将建筑整体划分成若干个体单元,使这些个体单元的刚度以及重量均匀,从而降低地震对建筑物的破坏程度。防震缝一般设置于地基之上,宽度基本在50~100mm内取值。
2.2设置构造柱
为增强抗震能力,加强建筑材料强度与剐度分别在建筑物拐角、墙根部、隔断、高墙体中部、楼梯以及电梯间等位置设置构造柱,并通过圈梁、构造柱与墙体三体之间紧密相连构造出稳固的空间骨架,大大提高了建筑物强度及稳定性,也对墙体的应变能力得以提升,使建造出的建筑物达到“裂而不倒”的高标准要求。建筑施工过程中需要按照“砌墙→逐段柱身”的顺序来进行工程搭建,在柱身过程中需要现浇钢筋混凝土,使之更加坚固,在构造柱时,要做好根基,在柱下固定钢筋混凝土,保证其根基稳定,柱的截面应≥180mm×240mm,主筋采用一般规格:4×412mm,箍筋间距应≤250mm,墙柱间沿墙高每≤250mm增设4×46mm的钢筋加以连结(嵌于墙内钢筋需≥1m)。
2.3设量圈梁
需要圈梁来配合楼板进行搭建是提高建筑物空间的刚度,加强空间整体性,巩固墙体稳定性,减少开裂情况,提高抗震能力的必要措施。圈梁的材料有两种可以选择:钢筋砖与钢筋混凝土。钢筋砖圈梁用于地震低发区的非抗震区域;钢筋混凝土则相反用于抗震地区,它的宽度基本和墙体厚度相当,高一般≥120mm,其最小横截面为240mm×120mm。抗震地区建筑建设中圈梁务必完全闭合,保证不能被洞口截断。
3.结语
建筑结构的抗震设计的优劣,是衡量工程质量的重要因素,为建筑质量作以保障。建筑结构的抗震设计直接影响的是建筑寿命,而间接影响的是建筑承纳人员的生命安全以及建筑单位的经济效益。所以,建筑结构抗震设计的整体思想必须遵循:避开不利区域选择合理的建筑建设地区(了解建筑施工地区的实地情况)、进行全方面合理设计(工程人员与设计人员的协调设计、建筑外形设计)、通过总结与对比选定合适的结构体系,结合最佳抗震技术,把握建筑建设过程中抗震的重点措施。根据上述设计思想,才能够完全保障建筑结构的抗震效果。
参考文献
[1]王秀丽.多层钢框架梁柱连接节点抗震性能研究[D].哈尔滨:哈尔滨工业大学,.
[2]钱俊,张大圣,冯俊等.浅谈建筑结构工程中抗震技术分析[J].城市建设理论研究:电子版,(20):65.
[3]万利超,蒋丽平.结构抗震技术在建筑工程中的应用分析[J].城市建设理论研究:电子版,(32):38-40.
篇4:超高层建筑结构抗震设计论文
1超高层建筑
超高层建筑高度要求与结构类型和抗震烈度密不可分,超高层结构设计要进行两种方法以上的抗震核算,并且进行抗震设防专项审查。世界超高层建筑有迪拜哈利法塔,高828m;广州塔,高600m、上海环球金融中心,高492m等。超高层建筑因其超高的高度而具有不同于普通建筑和高层建筑的特点。首先,对于超高层建筑,传统的砖、石等材料已难以适用,其结构类型也更具选择多样性,如钢筋混凝土结构、全钢结构和混合结构等。其次,超高层建筑的垂直交通与消防,由于其超高的高度,较依赖于垂直交通,同时也给消防增加了困难,这就要求超高层建筑的每一层都需设置灵敏的烟雾报警器、自动喷淋和适当的避难所。最后,超高层建筑通过对风作用效应、重力荷载作用效应、施工过程的影响、空间整体工作计算、结构整体内力与位移、抗震性能等设计计算分析,进而提高超高层的抗震性和安全性。
2超高层建筑结构抗侧刚度设计与控制
为了提高超高层建筑的抗震性,其足够的结构侧向刚度必不可少。足够的结构侧向刚度不仅可以保障建筑物的安全性、抗震性,还可在一定程度上有效抵抗建筑结构构件的不利受力情况及极限承载力下的安全稳定性。设计超高层建筑的结构抗震侧向刚度,应重点从其结构体系和刚度需求进行。
2.1结构设计。结构初步设计根据建筑高度和抗震烈度确定高度级别和防火级别。超高层结构设计首先满足规范要求的高宽比限值和平面凹凸尺寸比值限值,其次控制扭转不规则发生:在考虑偶然偏心影响的规定水平地震力作用下,扭转位移比不大于1.4;最大层间位移角不大于规范限值的0.4倍时,扭转位移比不大于1.6;混凝土结构扭转周期比不大于0.9,混合结构及复杂结构扭转周期比大于0.85。最后设计过程中严格控制偏心、楼板不连续、刚度突变、尺寸突变、承载力突变、刚度突变等现象。满足结构设计规范的同时,还应考虑建筑师的设计意图和功能需求,同时满足设备专业设计要求。结构平面的规整程度直接影响着抗震设计的强弱,尽量采用筒体结构,以使得承受倾覆弯矩的结构构件呈现为轴压状态,且其中的竖向构件应最大程度的安置在建筑结构的外侧。各竖向构件和连接构件的受力合理、传力明确,降低剪力滞后效应,杜绝抗震薄弱层产生。
2.2结构侧向刚度控制。超高层建筑的抗震性能设计主要与结构侧向刚度的最大层间位移角和最小剪力限制相关。对于层间位移角限值,其是衡量建筑抗震性的刚度指标之一,地震作用应使得建筑主体结构具有基本的弹性,保证结构的竖向和水平构件的开裂不会过大。同时,因超高层建筑的底部楼层、伸臂加强层等特殊区域的弯曲变形难以起主导作用,所以应采取剪切层间位移或有害层间位移对其变形进行详细的分析与判断。对于最小地震剪力,其最重要的两个影响因素是建筑结构的刚度和质量,当超高层建筑难以达到最小地震剪力要求时,设计人员应该结合具体情况适度的增加设计内力,提高其抗震能力和稳定性,然而,当不能满足最小地震剪力时,还需通过重新设计或调整建筑结构的具体布置或提高刚度来提高建筑物在地震作用下的`安全性,而非单纯增高地震力的调整系数。
3超高层建筑的性能化抗震设计
超高层建筑的抗震性能设计,国内主要根据“三个水准,两个阶段”,即“小震不坏、中震可修、大震不倒”。超高层建筑来说,其建筑工程复杂、高度极高、面积大、成本高,一旦受到地震损害,其损失程度会更高,因此,必须充分考虑各方理论、实际情况和专家意见,兼顾经济、安全原则,定量化的展开超高层建筑的性能化抗震设计。同时,相关文件虽针对超高层建筑结构的性能化设计制定了较具体且系统的指导理念,涉及宏观与微观两个层面。但是,由于结构构件会受到损坏,且损坏与整体形变情况的分析计算都需进行专业的弹塑性静力或动力时程计算,而目前我国尚未形成相关的定量化的评价体系,因此,设计人员应在积极参考ATC-40和FEMA273/274等规范。此外,对于弯曲变形为主导的建筑结构,在大震作用后应尤其注重构件承载力的复核。
4超高层建筑多道设防抗震设计
除了上述注意事项外,针对超高层建筑进行抗震性设计时,还因注重设计多道的抗震防线。多道抗震防线是指一个由一些相对独立的自成抗侧力体系的部分共同组成的抗震结构系统,各部分相互协同、相互配合,一同工作。当遭遇地震时,若第一道防线的抗侧移构件受到损害,其后的第二道和第三道防线的抗侧力构件即会进行内力的重新调整和分布,以抵御余震,保护建筑物。目前,我国超高层建筑主要依靠内筒和外框的协同工作来达到提供抗侧刚度的目的,包含两种受力状态:首先,建筑的内外结构通过楼板和伸臂析架来协调作用,进而使得外部结构承受了较多的倾覆弯矩和较少的剪力,而内筒则承受了较大的剪力和一些倾覆弯矩,广州东塔就是此受力方式的典型;其次,以交叉网格筒或巨型支撑框架为代表的建筑外部结构,其十分强大,依靠楼板的面内刚度,外部结构即可同时承受较大的倾覆弯矩和剪力,如广州西塔。
5结语
综上所述,超高层建筑的抗震性能不仅关乎着建筑工程的投资,还威胁着人们的生命财产安全,因此,设计单位和相关工作人员必须树立正确的观念,积极学习并引进国内外的先进理念和设计,不断提升自身的设计水平,为促进超高层建筑的发展奠定基础。
篇5:高层建筑抗震优化设计论文
1性能抗震设计与常规抗震设计的对比分析
1.1常规抗震设计和性能设计方面的区别
性能设计提出小震不坏,中震可修,大震不倒的设计宗旨。与常规抗震设计的区别在于,第一,它的设计目标主要针对小地震,中型地震还有大型地震。而且还通过对全国65个城镇的地震所发生的概率,从而再对地震的强烈程度进行衡量,确保房屋建筑不发生破坏,达到可修,不倒的目标,通过对这些要求的论述可以看出,这些大多数都是针对建筑在宏观性能方面的控制。第二,为了实际施工中的效果有有据可依,最终选用了分两个阶段的简化分析方法,第一个步骤是对结构的构建进行验算,主要是对它的承载力进行计算。对这个计算,具体是选用了在地震比较小的情况下,按照相应的弹性反映理论,通过计算得到在小震作用下的标准值,以及相应的地震作用下的内力以及形变效应。通过可靠的分析,从而得到构件承载力的具体结果。随后将概念设计有关的内力进行调整,从而放大抗震的结构构造,这种措施可以有效满足对第二水准以及第三水准在地震宏观性能方面的控制要求。第二个阶段,就是要对构件结构的弹塑性以及其中的变形进行验算,同时还要对地震在倒塌状况下的结构,或者是有特殊要求的一些建筑结构,一定要对它的薄弱部位进行加固,以此来适应在大震发生时不会倒塌,或者是发生位移的情况,。
1.2常规设计和性能设计方法的比较分析
对于常规的抗震设计而言,它的设计目标是小震不坏,中震可修,大震不倒,具体而言就是在小地震的情况下有相关的性能指标,而在大型地震下有一定的位移要求,剩下的就是宏观方面的指标,在建筑的使用功能上,具体的分为了甲乙丙丁四种级别,在这四种级别的建筑当中,对防倒塌的要求不尽相同,其余的基本都是一样的,而针对性能的抗震设计,它是按照使用的功能来划分的,并且在这个领域提出了很多的预期性能目标,其内容不仅涉及了建筑的结构,同时还包括非结构的,还有一些设施的具体指标。而在具体的实施方法上,常规的抗震设计是按照指令性和处方的形式进行规划和设计的,根据不同的建筑结构概念而进行设计,比如小型地震下的弹性设计,在经验方面的内力调整内容,以及对构造的放大处理等,这些都是为了达到预期的宏观设计而落实的具体措施。而针对性能方面的抗震设计,除了满足最基本的要求以外,还要提出一些满足预期具体要求的有利论证来作为依据。这方面的内容主要包括建筑结构的体系,依据比较细致的分析内容,还有对完成抗震指标的具体试验措施等。还要有对这些内容的专业评价等。通过这几个方面的对比分析不难发现,针对于建筑的抗震在性能要求方面的设计方法的提出,成为了当前的发展趋势,而且在目前来看,在对高层建筑的结构设计当中,其可行性是非常好的。如果想要在所有的建筑结构中进行推广,还需要对其进行更深一步的探讨,还有相关设计人员自己的理解与掌握。
2高层结构的抗震性能优化
在地震水准不同的情况下,对高层的建筑结构在性能水准,还有性能目标方面的要求也不同,具体而言,它的抗震结构性能可以分为下面几个标准。第一,高层结构在发生地震之后,最好是完好无损伤,同时在一般的情况下,是不需要进行修理就可以继续使用的,而且建筑还要可以进行正常的安全出入以及使用。第二,如果地震发生后,其结构发生了非常明显的损坏,而且大多数的构件都发生了中等的损坏,从而进入屈服状态,在有比较明显的裂缝下,大部分的构件都有很严重的损坏程度,但是其整体的结构并不会发生倒塌,同时也没有局部倒塌的情况,建筑中的人员会有一定程度的伤害,但是对他们的生命安全却没有太大的威胁。
3结构抗震优化计算及试验要求
3.1建筑结构的模型设计分析
对高层建筑结构,尤其是在性能设计方面的计算要特别严格,不仅要对构件的承载力,还有变形进行计算,还要考虑构件在屈服之后其性能发生的变化。对这些方面的`正确计算,对分析建筑的抗震性能,还有结构的实际所受应力情况都能够直观表现出来。但是这些计算都是要在合理的力学模型上来计算,而且结果不能脱离实际,否则没有任何参考价值的,在对结构抗震性能在弹性方面的计算,还有非线性方面的计算中,一定要分析结构的整体模型状况,还有构件以及节点的各种数据参数,必须保证其正确合理。如果建筑结构中拥有水平转换的构件,同时在区分这些问题的时候,还要对楼层的层数和层高进行计算。在涉及到剪力墙的计算方面,一定要关注对非线性的计算和分析,这对计算出模型的相关参数方面至关重要。如果建筑设计中选用了滑动的支座结构,必须对支座两侧的结构,以及它们之间的相互作用关系进行考虑,否则会对整体的计算模型产生严重的影响。
3.2结构抗震试验的设计要求
在进行高层建筑结构抗震方面的设计时候,在某些方面没有设计理念,缺乏一些相关的依据时,进行相关的模型试验很有必要。比如说选用的混凝土要有很高的含钢率,用这种材料来建设梁柱和剪力墙,在对拥有型钢的异形截面构件,或者是一些新型的构件进行使用的时候,对这些构件必须要进行相关的模型试验。在使用杆件比较多的铸铁点,还有多级的转换层,以及让楼梁侧面的楼板发生开洞,使楼梁本身和梁柱的节点地方不和楼板产生直接有相连接的关系时,对这些新设计结构的部件必须进行模型试验。
4总结
基于性能方面的抗震设计,无论任何时刻其重要性都毋庸置疑。这种方法和现有常规方法相比较,通过以上的阐述显示,其优点极其明显。在目前,高层建筑在结构的设计上都是选用的针对性能设计方面的理念,而且方法的可行性表现非常好,所以对未来的高层建筑在结构设计以及技术进步和创新上,是非常有利的。
篇6:桥梁抗震设计研究论文
[摘 要]我国地震时常发生,震害强烈,破坏力大。
因此,对于我国的公路桥梁工程建筑来说,必须要加强防震措施,减少地震带来的损失。
我国安全防灾等相关部门要不断加强公路桥梁质量规范和设计,推进抗震措施的理论发展和实践技术,来保障人民财产在地震灾害中不受较大的损失,促进社会的和谐发展。
[关键词]桥梁抗震设计、破坏的类型、措施
一、地震给桥梁带来的破坏类型
(一)支座破坏
根据我国对地震灾害中桥梁的调查显示112座桥梁中有53座桥梁约占47%发生了支座破坏,综合国内外十次大地震的调查报告,支座的破坏现象属于普遍现象。
支座的地震灾害主要表现为支座倾斜和剪断、自动支座的脱落和支座自身建造组成的破坏。
支座垫块被重力压碎,使得桥板不稳定,甚至造成落梁。
落梁的发生与支座破坏密切相关,支承破坏使得桥梁上部失去支撑,造成落梁事故。
当支座破坏时会使得墩-梁之间产生位移,当墩梁间的相对位移大于主梁搁置长度后,主梁将从桥墩脱落从而使得发生落梁。
(二)梁体移位造成的破坏
上部梁体的移位是震害中常见的破坏,根据地震的震向而发生纵向移位、横向移位以及扭转移位。
其中伸缩缝处发生移位成为主要灾害。
地震时地势的扭曲,桥梁的梁体移位是绝对的。
如果震幅较小不会发生太大的移位,震后将换掉不能正常工作的的支座,把梁体加固后恢复原位,桥梁就还可以正常工作。
但是,如果震幅过大,造成较大移位就会导致落梁。
所以采取抗震措施减小梁体位移就显得十分重要。
就如云南地震时的有些桥梁上部结构没有落梁,发生了比较大的移位。
虽然没有出现塌落事故,但是已经成为废桥不再能够正常使用了。
(三)地基与基础破坏
地基与基础的严重破坏是导致桥梁倒塌的重要原因,而且倒塌后基本无法修理。
基础与地基的紧密相连,基础的好坏直接影响着地基的稳定程度。
基础的破坏势必会引起地基的破坏,使得出现移位、倾斜、下沉、折断和屈曲失稳等现象。
扩大基础的震害一般由砂土液化、地基失效的不均匀沉降、土承载力和稳定性较差、地面变形较大等导致地层发生水平滑移、下沉、断裂而造成的基础破坏。
常见基础破坏除了上面的原因外,还有上部结构传导下来的惯性力所引起的桩基剪切、弯曲破坏,更有桩基础设计不当所引起的。
桥墩在地震中会出现桥墩倾斜、沉降、移位、墩身剪断、开裂,受压缘的混凝土崩坏,钢筋屈曲、裸露,桥墩与基础连接处折断、开裂等现象。
二、桥梁的抗震设计要点
(一)抗震概念设计
地震的发生存在多种偶然的复杂性因素,使得结构计算模型需要的假定结果与实际情况存在较大差异,以致计算机在一定程度上难以预测抗震性能。
所以,在桥梁结构抗震设计中,不一定要完全信赖计算,概念设计其实比计算设计更加准确可信。
优秀的概念设计使得桥梁结构的抗震性能更加出色。
优秀的概念设计需要根据桥梁的功能和结构作出相应的力学分析,设计出独特的防震结构体系。
抗震桥梁设计时,应对动力特征进行简单分析和对震力进行预测,找到桥梁结构设计的薄弱部位进行加固;然后对上、下部结构连接部位和过渡孔处连接部位及塑性铰预期部位和桥墩形式的选取、构造设计等进行分析同时作出相应的补救措施,防治桥梁出现坍塌,来保证桥梁结构的经济性、抗震安全性和选择结构体系正确性。
最后,应根据分析结果对抗震性能的好坏进行综合性评定,根据分析结果再对设计方案进行不断的修改和完善,力求达到最佳。
(二)延性抗震设计
桥梁的抗震设计,要对预期会出现的塑性铰部位进行配筋设计计算,对其进行加固和防护;同时为保证抗震安全性,对桥梁结构进行分析,直到通过抗震能力检测。
考虑多数条件,多种墩高和场地及多种地震烈度的情况,在进行桥墩线弹性最大弯矩比和非线性位移延性比参数的变化规律分析是通过大量数据分析统计和计算得到的,根据随机地震反应理论和动力计算,总结出估算解决桥墩位移延性的方法,降低地震所造成的危害。
(三)桥梁减、隔震设计
进行桥梁减震和隔震设计可以较好地提高桥梁抗震能力,并且具有简便、先进、经济等优点。
减隔震支座的设计装置使得结构消耗的能量较少同时增大结构的振型周期,降低了地震时的震波频率,良好的自我复位能力结合了结构特点选取适当的建设方案,建立相应的建造参数,合理有效的使得结构地震的反应程度降低,使地震后桥梁上部结构基本能够恢复到原来的位置,最大程度的减少了桥梁建筑损失程度。
(四)场地的选择
在场地选择的过程中,应该选择有利于桥梁抗震的地势基础。
其中有利于抗震的地段主要指一些土壤条件好和比较坚实的地段。
不利于桥梁抗震的地段主要是指在地震的过程中可能发生陷落的松软地段以及土壤成因、岩石状态和性质都不明显的地段。
三、公路桥梁的防震措施
(一)防止落梁的措施
主梁的支承长度按照公式:a≥50+L(L是指梁的跨径;L单位为m;a单位为cm)有伸缩缝的相联桥墩在设置主梁限位装置的时候,适当的将主梁的支承长度在伸缩范围内取值稍微偏大一点。
依据国内外建设规范以及抗震建筑设计细则,应设置纵向防落梁的安全防卫构造,但是限位装置不能妨碍防落梁构造作用的正常发挥。
挡板构造尺寸应该适当偏大,主筋配筋要足,挡块内侧加入减震橡胶块,特别是在斜弯桥设计中应比直线桥具备更多的考虑挡块,内侧不仅应设置橡胶块,还应考虑留有不小于5cm的缝隙,同时桥墩盖梁端部悬出挡块外10cm为宜。
(二)桥台的抗震防护措施
桥台胸墙需要加强,并加大配筋数量,用来缓冲地震的作用力。
在各个梁中间和梁与桥台胸墙中间适当设置弹性垫块,选取浅基的桥洞和通道来加强下部的支撑梁板,为防止墩台在地震时滑移,尽量使结构形状保持四铰框架。
当桥位位置处于液化土或软土的地基时,使得桥梁中线与河流保持正交形状,并适当增加架桥距离,才能保证桥梁的安全质量。
当桥台处于路堤较高的.高度时,这样的情况就应该首先选择在地形平坦、横坡较缓的地段通过,来保证桥台的稳定。
桥台高度的降低是稳定的前提,然后再将台身掩埋在路堤土方内,保证填土的密实度。
基础的建设应尽量采取整体性强的T形、U形或箱形桥台,来保证地基的稳定强度。
为防止砂土在地震时液化,桥台背部的每一层都需要非透水性的填料进行夯实,并且要加强防水设施的建设。
(三)桥墩抗震保护措施
桥梁抗震设计中利用桥墩的延性减震的方法是现在最实用的方法。
高位桥墩应该采用钢筋混凝土的建筑结构,同时加强空心截面,加大桥桩和桥柱的半径。
在桥墩塑性铰位置和挨着承台下桩基的范围区域内加强箍筋数量的配置,墩柱之间的箍筋距离与延性有着重要关系,距离越大延性越小,相对的间距越小延性越大。
桥墩的高度相差过大时高度低的墩将延性较差最先受到严重的破坏。
现有的绝大多数桥梁建筑中的结构都是钢筋混凝土结构,虽然钢筋混凝土结构具有优秀的抗震性能,但是如果设计不合理,钢筋混凝土结构在地震的作用下就会造成巨大的破坏。
所以,通过一些抗震的措施来保证结构具有抗震所需的延性,抗震能力十分重要,这种做法也是为了在大强度的地震中保证桥台建筑物的结构不被改变和破坏,从而实现建筑抗震设计这一目标,使建筑物结构的完整与安全得到有效地保障。
桥梁工程的抗震设计对整个桥梁质量安全有着重要的意义。
四、结束语
近些年来,国内外地震灾害频繁发生,给人类生存带来了极大的威胁。
随着科技的发展,我国在抗震措施方面有了较大的突破。
在公路桥梁设计上对抗震建设的重视,保证了人民财产的安全和公路桥梁设施的完整,避免了公路桥梁结构受到地震灾害的毁灭。
主要阐述了我国公路桥梁的主要震害,对公路桥梁设计与抗震措施进行了简单的分析和指导。
篇7:桥梁抗震设计研究论文
摘 要:作者针对公路桥梁抗震设计做了一些理论和实践的探讨,内容主要包括桥梁结构震害及其原因分析和桥梁减震设计要点,并对公路桥梁抗震设防措施进行了介绍
关键词:公路桥梁;抗震设计
篇8:公路隧道洞口施工技术研讨论文
公路隧道洞口施工技术研讨论文
摘要:以项目工程实例为研究背景,详细阐述公路隧道洞口施工方案确定的基本内容,解析公路隧道洞口工程施工技术的应用步骤,并提出隧道洞口施工中质量控制要点,以期分析后能够提高公路隧道洞口施工水平。
关键词::公路隧道,洞口,施工技术
引言
近年来,伴随着国民经济的飞速发展,闲暇假期时间各大旅游景点的人流量大大增加,旅游行业也随之迅速发展。各大景区的道路设施建设也随之跟进,而在风景宜人的山区,这些旅游设施的建设必然少不了盘山公路及公路隧道的建设,其中又以后者为重。在进行公路隧道的建设施工时,最重要的部分便是位于公路隧道首尾的洞口工程施工,本文将以一次隧道工程施工为例,具体分析在进行公路隧道洞口工程施工时关键的技术要点,并对其具体施工过程提出思考,在未来施工建设中应注意吸取经验教训,对工程的进展产生积极影响。
1工程概况
某工程,施工隧道为两座上、下独立分修的单向三车道公路隧道,两隧道的洞身位置基本平行,其中左线隧道的长度为1.510m,右线隧道的长度为1.525m,中心平均距离为40m,单洞净宽度为13.28m,单洞净高度为4.9m。由于客观环境地质因素制约,本次施工隧道洞口段岩质稀松,且风化问题严重,严重影响了施工的安全性、稳定性。公路隧道左洞口19m,右洞口13m为一类围岩,两洞口软弱段围岩长分别为50m,58m,埋深为30m~33m。
2制定工程施工方案
由于施工环境地质情况限制,在进行隧道洞口施工前,应先进行支护措施的搭建,以保证工程的安全进行。在制定具体施工计划时,应首先进行稳固工作计划的制定,采用大管棚注浆进行超前支护,以为后续工作消除隐患。在进行挖掘工程时,为保证工程的'合理展开及工程的施工效率,应采用中隔壁法进行隧道工程施工,使用各种措施对周围施工环境进行联合支护,保障公路隧道工程施工的顺利进行。
3探讨工程核心技术
3.1管棚超前支护工作
管棚的超前支护工作是公路隧道洞口工程施工安全的保障,相关施工单位应端正态度,严格把控工程质量,仔细规范施工步骤,确定管棚超前支护足够坚固稳定,能够起到保障施工安全的作用。在管棚超前支护工作中,主要分为以下四步:1)确定并钻取孔眼。在本次范例中,共分为左右两座隧道,需要对两侧洞口都进行超前支护,因隧道施工环境的影响,应采用长大管进行施工,其中右侧洞的长度为14m,左侧洞的长度为17m。在实际操作中,应使用管壁厚6mm无缝钢管,沿预计施工位置隧道轮廓外延向前延伸,每两根相邻棚管的间距应为40cm,两侧隧道洞各设置48根。2)检验并清洗孔眼。确定孔眼位置,应开启孔眼钻取工作。孔眼钻取应达到规定长度,符合棚管设定标准。在检验孔眼合格以后,应对孔眼进行清洗工作,为之后棚管铺设做准备工作。3)检验并铺设棚管。在进行棚管铺设之前,应对棚管进行质量检测,确认无质量问题之后,应按照工程相关规定要求,进行管道铺设。4)对棚管进行注浆。确定棚管铺设完成之后,对管道注入按一定比例调配而成的砂浆,完成对棚管的加固,结束管棚超前支护。
3.2中壁法施工技术
3.2.1中壁法施工的基本特征在实际施工过程中,为了保证施工安全,可采取双侧壁导坑法、中壁法等多种施工方法,然而前者施工周期较长,且施工步骤复杂繁多,对工程进度影响较大,故在本次案例中使用中壁法进行施工。在实际案例中,中壁法可以对周围围岩进行比较有效的控制,由于本案例中实际地质环境较为复杂,中壁法可以对前方施工环境进行提前预知,对即将出现的问题进行提前防范,将隐患问题及时扼杀,形成一种对于危险的及时预报,为施工工作人员的安全提供进一步保障。3.2.2中壁法施工的具体步骤在进行具体工程的实施时,应根据实际情况,按照科学的施工方法,对具体方案进行合理的调整,并在具体实施中结合相关地质环境进行修正,实事求是,贴合实际,以确保在施工过程中不会出现什么问题。按照中壁法需将工程分成若干部分,按照顺序对其逐步施工,先从隧道的一侧开始施工,在其中设置隔壁墙,然后再对另一侧开始施工,然后开挖先施工部分的最后部分,再对隔壁墙进行延伸,最后再对后施工一侧的最后部分施工,完成工程。现将左侧隧道的上部标为第一部分,中部标为第二部分,下部标为第三部分,右侧隧道上部标为第四部分,中部标为第五部分,下部标为第六部分,并进行实际演示:1)对第一部分进行开挖,应按照施工设计尺寸开始挖掘,每行进80cm进行一次支护工作,应先覆盖5cm的混凝土层,再进行钢筋网的架设,厚度要求为20cm,最后在确保支护工作完成、施工环境安全的情况下进行人工施工。2)对第二部分开始施工,同第一部分施工类似,应注意对隔壁墙及其周边范围进行混凝土覆盖,确保隔壁墙稳固。3)对第四部分开始施工,同第一部分施工相近,省略中壁架设工作。4)对第五部分开始施工,同第二部分施工一致,省略中壁架设工作。5)对第三部分开始施工,同第一部分施工雷同,应注意底部施工的稳固性,应对整体工程设施起足够支撑作用,应保持工程结构的高质量高坚固,确保在之后使用过程中稳固耐久,同时注意中壁的延伸工作,确保其稳固。6)对第六部分开始施工,同第三部分施工相似,省略中壁架设工作。
4施工中的技术重点
4.1挖掘工作的技术要点
在进行隧道挖掘工作时,应注意施工安全,切勿贪功冒进,对未架设支护的路段进行施工,尽力保证工作安全开展,排除安全隐患。施工人员应对自己生命安全负责,管理人员应起到监管监督作用,避免事故发生。施工计划应按照设计图纸进行,应对施工环境地质环境进行实时监控,若实际地质情况与图纸估算不符,应呈交设计部门,对图纸进行重新修改,保证工程安全,同时确保工程高质量、高效率进行,工程设计人员切勿玩忽职守,应对工程图纸及工程计划展开实时跟踪,确保工程实施过程科学合理,且在安全前提下进行。
4.2支护工作的技术要点
在进行工程前期支护工作时,应保证工程质量,应对工程所选用的建材进行质量检测,确保其符合相关规定,避免因工程用料问题导致安全事故。保证支护工作按照标准完成,并不仅是为施工工作人员负责,更是为隧道在使用过程中的质量安全负责。应本着实事求是的精神,稳扎稳打,确保工程按照相关标准、相关要求完成,对质量不松懈,对安全不懈怠,保证效率,保证质量,完成支护工作。
5结语
长期以来,路上交通都在历史中扮演着人类交通中最重要的角色,而因为人类身体的制约,也将在长久的未来发挥巨大的作用。保障路上交通设施安全可靠,是我国交通建设中最重要的一环,公路隧道的建设工程作为路上交通建设的一部分,也应引起足够重视。相关工作人员应足够重视,加强工作管理,保障工程质量。
参考文献:
[1]万虹.分析隧道洞口施工技术及作用[J].黑龙江交通科技,(9):111-112.
[2]申海涛.浅谈公路隧道洞口工程的施工技术[J].居业,2017(1):33-34.
[3]周俊哲.高速公路隧道洞口工程施工技术[J].江西建材,(4):89-91.
[4]赵翔宇.公路隧道洞口工程施工技术探讨[J].科技创新导报,(31):43-45.
[5]李刚,杨飞雪.公路隧道洞口工程施工技术探讨[J].工程技术研究,2017(11):44-46.
篇9:建筑结构抗震设计方法探究论文
建筑结构抗震设计方法探究论文
摘要:地震是怎么样引起了地震是怎么样引起了,是现在网络及其国家地震局一直都在关注的话题,也是一直都在研究的问题,近些年不同城市发生的地震也是比较常见的问题市发生的地震也是比较常见的问题,地球板块运动过于频繁,导致地震的屡屡出现,因此,全球都在对建筑结构抗震设计采取了梳理分析理分析,对现有的建筑都设定了抗震设计方案,对于高层及其低层建筑中防震设计都在不断的提高,防止造成的伤害及其破坏,这种伤亡性的破坏对于任何国家来说都是惨痛的种伤亡性的破坏对于任何国家来说都是惨痛的,因此,本文针对我国建筑结构抗震设计的发展和问题进行细节分析,并做出相关的措施的措施,希望对建筑抗震设计带来帮助。
关键词:建筑结构;抗震设计;方法发展;问题分析
1前言
我国在建筑结构抗震设计方法上的发展比较晚我国在建筑结构抗震设计方法上的发展比较晚,从唐山大地震到汶川大地震的发展大地震到汶川大地震的发展,我国建筑抗震安全性能都是比较重视的较重视的,从最早的抗震方法静力测力上可以接受一些小型震源的稳定震源的稳定,然而在现代建筑特别是高层建筑上,是很多抗震问题无法避免的问题无法避免的,例如从现在大多数采用框架剪力墙结构上来说来说,最大的特点是灵活,承受力大,而且抗震能力很强,这一技术也在不断的推广技术也在不断的推广,为建筑行业带来很好的选择,但是在一些高层建筑上还存在一些问题些高层建筑上还存在一些问题,对此我们要通过问题的根源对抗震所面临的问题进行分析对抗震所面临的问题进行分析,并提出相关的解决方案,希望惨痛的场面尽可能少发生惨痛的场面尽可能少发生。
2分析-建筑抗震设计过程注意的问题及其事项
2.1设计问题上--建筑体型。第一第一,我国相关条例规定在实施建筑项目中,有一条抗震设计的合理性是必须要进行检测的一项任务设计的合理性是必须要进行检测的一项任务,从平面设计图中来分析地震波的损害层度中来分析地震波的损害层度,这是建筑商在施工之前将这项工作反馈到国家房管局的工作反馈到国家房管局的,第二,在设计上一般会有平面设计和空间设计和空间设计,一般我国地震常出现余震和波及周边震源的情况况,不规则建筑受到的地震影响最为严重,因为在不规则建筑中中,地震波会存在左右及其上下的晃动,一些复杂的建筑在这个期间最容易错位及其坍塌现象个期间最容易错位及其坍塌现象,过多复杂的建筑在受到地震波的影响一瞬间倒塌震波的影响一瞬间倒塌,求生的'机会都不存在,例如汶川大地震中震中,相关专家分析,主要是不规则建筑引起受创伤比较大,第二就是地型的变化第二就是地型的变化;最后,在地震波晃动过程中,建筑体型设计尽可能保持整洁设计尽可能保持整洁、规则,这样防止因为一些外凸和内凹的现象现象,还有就是少一些不对称的建筑,这样保证在最后确定体型上保证质量和需求度的分布均匀及其避免发展不对称的反应反应。
2.2建筑平面布置设计问题。首先首先,要分析建筑物内,会有柱、梁、板的布置到整个建筑物的承重和受力物的承重和受力。在进行建筑结构的平面的布置过程中,建筑商要对楼层之间的关系和布局进行分析筑商要对楼层之间的关系和布局进行分析,使得整个楼层之间的内外墙填充满间的内外墙填充满,这样在发生地震时就不会存在不协调的问题问题,这只是针对平面设计的要求,可以防止扭转动地震对其建筑的破坏建筑的破坏;其次,就是在电梯布置上要进行合理的设计,这样是导致地震发生时最为紧俏的问题之一样是导致地震发生时最为紧俏的问题之一,主要的原因就是很多结构的设计者由于没有考虑到电梯井有非常大的抗侧力的刚度的刚度,这样在有地震发生时,对建筑结构产生破坏,这些问题就是在平面布置中没有把建筑结构放在第一位的原因题就是在平面布置中没有把建筑结构放在第一位的原因;最后后,就是墙体布置考虑不周到,墙体不均匀,结构刚度分析不合理合理,在发展地震波的时候,建筑结构受力不均匀导致破坏,很多建筑对于内外墙不够重视很多建筑对于内外墙不够重视,楼层之间的空间及其位置功能设计都不合理能设计都不合理,导致建筑结构平面设计出现误差。
2.3在屋顶建筑的抗震设计中的点笔之处。现代建筑行业多出现的是高层建筑现代建筑行业多出现的是高层建筑,在未来建筑中超高层建筑也是可以出现的层建筑也是可以出现的,这样的抗震设计主要是在屋顶,从结构特点上分析构特点上分析,主要在屋顶中一般会出现质量过高、过重的现象象,这些只是片面问题,其中最主要的是建筑重心,要熟悉建筑结构的中心位置筑结构的中心位置,在重心处设计最强硬的抗震,所以就避免屋顶过高屋顶过高,一定要处于四周平稳状态,这样对出现地震的现象也不会存在破坏性也不会存在破坏性,最终的结果就是防止问题的扩大化。
2.4建筑上应满足的设计限值控制问题。这个问题主要是抗震设计的专业问题这个问题主要是抗震设计的专业问题,每个建筑商在递交平面设计和空间设计时交平面设计和空间设计时,都会有抗震工作组对其建筑结构进行观测进行观测,并对设计的最终结果给予肯定或否定,例如:会根据物理的力学据物理的力学、空间学术及其抗震中的地质条件来决定设计限制中的控制问题限制中的控制问题,还有就是在设计楼层时也是要综合分析的的,不是开放商想建几层就建几层的,而是需要根据限值来控制的制的,最终的目的就是减少破坏性。
3详细分析建筑抗震设计中高层建筑的细节部分
3.1高层结构设计的标准。在建筑结构上来说在建筑结构上来说,最为重要考虑的就是高层结构设计的合理化和标准化的合理化和标准化,要综合考虑高层的框架,而且每一个框架都要做到抗震设计都要做到抗震设计,一般内部的接连中会出现刚度设计比较长得现象长得现象,这是有利于框剪设计中比较稳固的状态,这样可以有效的排除抗震出现的问题有效的排除抗震出现的问题;其次,就是墙的设计规格,框架完善后完善后,就是每堵墙的填充状态,墙体受到破坏力和承受力是最为主要的最为主要的,在布局过程中会把墙分成几段,这样整体高度和宽度都比较合适宽度都比较合适,因此在高层设计中,两边的边缘延伸及其框架是最好的设计前提条件架是最好的设计前提条件,也是避免发生破坏的主要原因。
3.2抗震端的设计。针对高层建筑的抗震设计中针对高层建筑的抗震设计中,抗震端是一个比较严重的问题问题,这就是设计中的细节问题之一,抗震端及其部分肢墙的截面的高度相差不应该太大截面的高度相差不应该太大,这个细节的关键就在此处,这点上一要稳定再次就是加固了上一要稳定再次就是加固了,在加固上选择材料是需要保证的的,材料是保证加固稳定的基础,但是如果发现漏洞的话,要及时进行修补工作及时进行修补工作,这样可以有效的保证抗震端设计的强度,在修补工作中我们会选取混凝土进行修补在修补工作中我们会选取混凝土进行修补,这样保证后期的使用度和稳定性使用度和稳定性。
4结语
综上所述综上所述,地震是无法预知的,也是一种普遍的现象,我们唯一可以做的就是预防们唯一可以做的就是预防,在建筑设计上的预防,地震带来的破坏和伤亡是可想而知的破坏和伤亡是可想而知的,从唐山大地震到汶川大地震这些事实都是我们为建筑结构防震设计最大的影响事实都是我们为建筑结构防震设计最大的影响,要综合考虑建筑的布局及其应用建筑的布局及其应用,在楼层及其结构上要通过检测才可以实施实施,在破坏和利益面前,我们要尽人为而形式,防止地震带给我们的伤害给我们的伤害,所以防震设计工作是一项需要我们不断去学习、去研究的去研究的,只有从学习和研究中才能找到真谛。
参考文献:
[[1]王映梅.浅谈竖向地震作用对建筑结构的影响[J].华章工程,2011(20).
[[2]杨国建.浅谈高层建筑混凝土框架结构设计[J].价值工程,20112011(20).
篇10:建筑抗震概念设计分析论文
建筑抗震概念设计分析论文
摘 要:根据地震作用的特点,阐述了结构抗震设计中“概念设计”的重要性以及对结构进行概念设计的原则。在提高结构的整体抗震性能时,运用新的抗震设计理念,为工程设计人员在今后的设计工作中提供了一些思路。
关键词:地震作用;抗震概念设计;场地;抗震措施
地震是地球内部构造运动的产物,是普遍存在的一种自然现象,由于地震作用的随机性、复杂性、藕联性,每次地震所产生的波形各异,因而其对建筑物的作用各不相同,所产生的破坏程度也千差万别。地震对建筑物的'作用与建筑物自身所固有的自振周期、场地土的动力特性有关,但因结构计算中计算模型、自振周期、材料性能、基础类型以及阻尼变化等均与实际情况存在差异,使得抗震计算时所考虑的地震作用无法准确估算,因而,在进行结构的抗震设计时,不能完全依赖地震作用计算,更要综合考虑多种因素,切实做好建筑抗震概念设计。
1 抗震概念设计的含义
抗震设计是通过地震作用的取值和抗震措施共同实现的,通过总结历次地震灾害后发现,对于结构抗震设计来说,“概念设计”比“数值计算”更为重要。结构抗震性能的决定因素是良好的“概念设计”,也就是说,“概念设计”是结构抗震设计的首要问题。所谓“概念设计”是指在进行结构设计时,既要着眼于结构的整体地震反应,又按照结构的破坏机制和过程,灵活运用抗震设计准则;既要把握整体布置的大原则,又兼顾了关键部位的细节,从根本上解决了结构抗震设计的问题,有效地提高了结构自身的整体抗震能力。
2 抗震设计的一般原则
2.1场地和地基
建筑结构在地震作用下的破坏情况有四种:
(1)地震时,在水平和竖向振动作用下,建筑物的内力和变形骤增,甚至结构的受力形式发生改变,最终导致建筑物承载力不足甚至于丧失或者变形过大而破坏。
(2)地震作用下,由于节点强度不足、延性不够、锚固失效,使得结构构件缺乏可靠的连接,建筑物丧失整体性而遭破坏。
(3)地震作用下,由于地基承载力下降或地基土液化,使得地基部分失效甚至于完全失效,最终导致建筑物倾斜、倒塌。
(4)由地震引发的次生灾害如火山、洪水、滑坡、泥石流等造成建筑物的严重破坏。
所以场地的选择是建筑抗震设计成功的第一步,从选址工作开始就应该选择对抗震有利的地段,尽量避开不利的地段,避不开时应采取有效措施确保地基的稳定性;任何情况下均不考虑在抗震危险地段建造建筑物。
2.2规则性建筑
在建筑的方案设计阶段就应该尽量采用规则建筑方案,即建筑平、立、剖应规则、简单、对称;结构侧向刚度、材料强度和质量的分布应均匀、连续,无突变,因为不规则的建筑在水平地震作用下也会产生扭转振动,进而破坏。
2.3合理的结构体系
一个合理的结构体系,首先应有明确的计算简图和合理、简洁的传力途径,对于不规则建筑,应采用空间计算模型计算地震力,考虑扭转藕联影响,使其更接近实际工况。不在同一结构单元混用受力体系,优先选用现浇混凝土结构,在多层砌体房屋中优先采用横墙承重的结构体系,在底层框架抗震墙砌体房屋中,优先采用混凝土抗震墙。体型复杂的建筑,设置合理的抗震缝将上部结构分割成相互独立、相对规则的结构单元。
2.4计算结果的校核
一般来说,在结构设计中,通常采用计算软件进行抗震分析,这就要求设计人员对所用软件的适用范围、技术条件、计算模型等均有深刻的认识和充分的掌握,对所有计算结果,应经认真分析校核,只有经分析判断结果合理、有效后,方可用于工程实际。
2.5抗震构造措施
对结构构件采用多道设防,严格按规范要求保证“强柱弱梁”,“强剪弱弯”,“强节点弱构件”,加强节点连接,加强梁、柱端头箍筋加密区的箍筋量。所用材料等级不低于规范要求的最低等级,从而有效减小材料的脆性,计算中还应严格控制梁的相对受压区高度。砌体结构应按规范要求设置圈梁、构造柱等,有效约束砌体,提高砌体的延性和整体性。非结构构件比如框架填充墙两端应与柱有效拉结,附属构件女儿墙、雨篷、挑檐等除保证自身整体性能外,还应与主体结构有可靠连接和锚固。
结语
结构设计人员在日常设计工作中,必须学会熟练运用概念设计,并使这一理念贯穿于结构设计工作的整个过程当中,既要严格把握好设计的大原则,又要全面考虑诸多因素,最终才能保证设计的科学性和严谨性,为社会创造更多精品工程。
参考文献
[1]GB50011-,建筑抗震设计规范[M].北京:中国建筑工业出版社,:6-14.
[2]GB50007-,建筑地基基础设计规范[M].北京:中国建筑工业出版社,2002.
[3]黄存汉.建筑抗震设计技术措施[M].北京:中国建筑工业出版社,2001:29-31.
[4]韦定国.抗震结构设计[M].武汉:武汉理工大学出版社,:69-71.
篇11:高层建筑结构抗震概念设计论文
摘要:随着我国建筑行业的快速发展,高层建筑的结构设计安全逐渐成为人们关注的焦点。防震概念设计是高层建筑结构设计的重要组成部分,直接关系到高层建筑物在自然灾害的影响下能否会给人们造成生命和财产的危害。所以本文先分析了高层建筑结构设计中抗震概念的概述,然后从四个方面阐述了高层建筑架构设计中抗震概念设计的应用策略。
关键词:高层建筑;结构设计;抗震概念;应用
防震设计是高层建筑结构设计必不可少的一部分,并且地震是一种无法消除的自然灾害。因此,高层建筑结构设计人员应采取科学、合理的措施来降低地震对高层建筑物的危害系数,以提高高层建筑物的稳定性,从而保证人们的生命和财产安全,这同时也是我国高层建筑物结构设计工艺不断优化的必然结果。
1高层建筑结构设计中抗震概念概述
地震的发生是无规律的,因此做好高层建筑物的防震设计是十分必要的。实践证明,只有利用科学、合理的设计措施,整体布局高层建筑的结构细节,才能降低地震对于高层建筑物的危害。一般抗震设计是从抗震值和抗震措施两个方面进行的,其过程是:地震情况统计、数据分析、提出概念。抗震概念设计的主要内容就是保证高层建筑整体的稳固性和细节结构的抗震性。简单地说,抗震概念设计就是基于工程抗震的基本理论和实际的抗震经验总结出的工程抗震概念,是决定建筑物抗震能力的基础。抗震概念设计中包含空间作用、非线性性质、材料时效、阻尼变化等多种不确定的'因素。抗震概念设计的原则是建筑结构设计简单性、刚度适宜性、匀称性、整体性。例如在一些地震频发的地区设计高层建筑时,应该考虑都高层建筑上下部分结构性质不同的问题。
2高层建筑架构设计中抗震概念设计的应用策略
2.1合理的场地
高层建筑物的建设地点也是保障建筑工程施工质量的关键因素。选择合理的建筑施工场地,不仅可以减少企业的投入成本,还能提高建筑物的稳固性。因此,施工人员可以利用现代先进科技设施来选择理想的地段。场地的选择应当避开地震危险地段,如地震时会发生崩塌、地裂以及在高强度地震下容易发生地表错位的场地。一般地震危险地段包括断层区、坡度陡峭的山区、存在液化和润滑夹层的坡地以及大面积采空的地区。如发生严重地震的四川北川地区,其区域特点是县境内地形切割强烈,地形起伏大,相对高差超过1000m,沟谷谷坡一般大于25°,部分达40°~50°,甚至陡立。并且地貌类型以侵蚀构造山地、侵蚀溶蚀山地为主。另外在县境内还存在一条断裂带。这也就是北川地区成为汶川地震重灾区的原因,该地区的地震宏观烈度达到了Ⅺ度。因此,建设高层建筑的重点就是选择地势开阔、平坦以及中硬场地土。如我国中部平原地区,其地势平坦,并且属于地震低发区。当然,如果无法避免区域限制,那么也可以选择抗震性比较好的地区,如避免存在孤立山包的区域以及表面覆盖层厚度较小的区域。总之,因地制宜,选择合适的高层建筑建筑建设场地是保证高层建筑物稳定性的最佳途径。
2.2合理布局建筑平面
建筑物的房屋布置和结构布置都是影响高层建筑物稳定性的重要因素。依据抗震的概念,合理布局能够有效提高高层建筑物的抗震能力,延长建筑的使用年限。一般施工人员都会根据地震系数选择适当的建筑物高度和宽度,使高层建筑的抗震能力达到最大值。建筑平面的布置可以从四个方面考虑:一是布置平面时,应当遵循简单、对称的结构特点,以减少偏心;二是应当保证质量和刚度变化均匀,避免楼层错层问题;三是尽量设计合理的平面长度,且建筑物突出的长度也应该符合相关标准;四是尽量避免采用角部重叠的平面图形以及细腰形平面图形。如早前发生在墨西哥的地震,相关人员在地震发生后对房屋的结构进行了分析。据数据表明,建筑物刚度明显不对称会增加15%的地震破坏率,拐角形建筑会增加42%的地震破坏率,因此,高层建筑施工人员应该科学合理的设置建筑平面。此外,现浇钢筋混凝土高层建筑适用高度的确定需要考虑地区的地震烈度,如高层建筑的抗震墙在烈度系数达到6的地区,其最高适宜高度为130米;在烈度系数为7的地区,最高适宜高度为120米。总之,合理的高层建筑物平面布局是保证高层建筑抗震能力的关键。
2.3合理的结构设计
高层建筑的结构设计不仅要满足抗震要求,还要满足经济、功能齐全、施工技术等要求。在设计高层建筑结构时要考虑实际的场地环境和建筑物本身的建设标准。另外,结构的设计还应该满足对称性。总之,对于高层建筑的结构设计应该从各个方面综合考虑。首先,高层建筑结构的设计需要考虑多种影响因素,除材料、施工、地基、防烈度等因素外,还要考虑经济因素,之后才能确定建筑物结构类型。有利于防震的建筑平面设计包括方形、圆形、矩形、正六边形、正八边形等,不利于防震的建筑平面设计包括多塔形、错层、楼板开口等。次外,如果建设的高层建筑属于纯框架高层建筑,那么设计人员应避免出现框架柱倾斜、楼体倾斜等问题。因为如果框架柱倾斜,一旦发生地震就会出现剪切破坏问题,造成高层建筑的严重损坏。其次,更为重要的是结构设计一定要遵循对称原则,避免扭转问题的出现。如果高层建筑结构采取对称的结构,那么当发生地震时,其建筑物只会发生平移震动,建筑物各个部分的受力比较均匀,从而降低地震对高层建筑的破坏程度。
2.4设置多条防震线
设置防震线是为了提高高层建筑结构的抗震系数,提高建筑物体的稳固性。之所以设置多条防震线是因为建筑物中各个部分的结构和功能是不相同的,设计相应的反震线能整体提高高层建筑物的抗震能力。设置多条防震线的优势在于如果发生地震时,第一道防线的抗侧力构件在遭到破坏之后,其地震的冲击力和破坏力就会减弱。这样当地震经过多道防震线之后,地震的破坏力就会降到最低。如尼加拉瓜的马拉瓜市的美洲银行大厦,就是应用多道防震线的典型建筑,其大楼采用的是11.6米*11.6米的钢筋混凝土芯筒作为主要的抗震和防风构件,并且该芯筒又由四个小芯筒组成。相关数据显示,该高层建筑对于地震的反应用数据表示是,当发生地震时,其四个小芯筒的结构底部地震剪力值达到了27000KN,结构底部地震倾覆力矩达到了370000KNm,其结构顶点位移值为120毫米。总而言之,设置多条防震线提高高层建筑物防震能力的重要手段。尤其是在社会经济快速发展的背景下,重视抗震概念的设计是延长高层建筑物使用年限,提高我国建筑工艺水平的关键。
3总结
综上所述,随着我国经济水平的不断增长,高层建筑物的数量也在迅速增长。因此,做好高层建筑结构设计中的抗震概念设计就凸显的尤为重要。将抗震概念设计应用到高层建筑结构设计中,不仅要考虑高层建筑结构施工的各个方面,还要考虑各种外界因素以及抗震标准。这样才能提高高层建筑的稳定性,降低地震给高层建筑造成的危害程度,从而保证人们生命和财产的安全。
参考文献:
[1]张念华.抗震概念设计在高层建筑结构设计中的应用[J].中国新技术新产品,,04∶78-79.
[2]李国珍.高层建筑结构设计中抗震概念设计的应用浅析[J].江西建材,2014,02∶29.
[3]陈琳琳.高层建筑结构设计中抗震概念设计的应用[J].江西建材,2014,09∶30.
[4]郑亚迪.抗震概念设计在高层建筑结构设计中的应用分析[J].山东工业技术,,03∶77.
篇12: 抗震设计方法研究的论文
抗震设计方法研究的论文
摘要:
文章阐述了抗震设计方法的转变,并介绍了两种不同设计方法的优缺点,对能量分析方法在抗震结构计算中的应用进行了分析。
关键词:
推覆分析方法;结构能量反应分析;地震动三要素;耗散能量
目前世界各国的抗震设计规范大多数都以保障生命安全为基本目标,即“小震不坏、中震可修、大震不倒”的设防水准,据此制定了各种设计规范和条例。依此设计思想设计的各种建筑物在地震中虽然基本保证了生命安全,却不能在大地震,甚至在中等大小的地震中有效的控制地震损失。特别是随着现代工业社会的发展,城市的数量和规模不断扩大,城市变成了人口高度密集、财富高度集中的地区,一般的地震和1995年的日本阪神地震,造成了巨.大的经济损失和人员伤亡。严重的震害引起工程界对现有抗震设计思想和方法上存在的不足进行深刻的反思,进一步探讨更完善的结构抗震设计思想和方法已成为迫切的需要。上个世纪九十年代,美国地震工程和结构工程专家经过深刻总结后,主张改进当前基于承载力的设计方法。加州大学伯克利分校的J.P.Moehlelll提出了基于位移的抗震设计理论;日本建设省建筑研究院根据建筑物的性能要求,提出了一个有关抗震和结构要求的框架,内容包括建议方案,性能目标,检验性能水准等:我国学者已认识到这一思潮的影响,并在各自研究领域加以引用和研究,如王亚勇、钱镓茹、方鄂华、吕西林分别发表了有关剪力墙、框架构件的变形容许值的研究成果,程耿东采用可靠度的表达形式,将结构构件层次的可靠度应用水平过渡到考虑不同功能要求的结构体系,王光远把这一理论引入到结构优化设计领域,提出基于功能的抗震优化设计概念。
我国现行的结构抗震设计,主要是以承载力为基础的设计,即用线弹性方法计算结构在小震作用下的内力、位移;用组合的内力验算构件截面,使结构具有一定的承载力;位移限值主要是使用阶段的要求,也是为了保护非结构构件;结构的延性和耗能能力是通过构造措施获得的。结构的计算分析方法基本上可以分为弹性方法和弹塑性方法。当前在建筑结构抗震设计和研究中广泛地采用底部剪力法和振型分解反应谱法等。这些方法没有考虑结构屈服之后的内力重分布。实际上结构在强震作用下往往处于非线性工作状态,弹性分析理论和设计方法不能精确地反映强震作用下结构的工作特性,让结构在强震作用下处在弹性工作状态下工作将造成材料的巨大浪费,是不经济的。
随着人们认识的提高,结构的地震反应分析设计方法经过了两个文献的转变:(1)静力分析方法到动力分析方法的转变。2)从线性分析方法到非线性分析方法的转变。其中动力分析方法就经过了从振型分解反应谱法到时程分析法、从线性分析到非线性分析、从确定性分析到非确定性分析的三个大的转变。作为一种简化实用近似方法,目前的推覆分析方法(Push—overAnalysis)受到众多学者的重视。它属于弹塑性静力分析,是进行结构在侧向力单调加载下的弹塑性分析。具体做法是在结构分析模型上施加按某种方式(研究中常用的有倒三角形、抛物线和均匀分布等侧向力分布方式)模拟地震水平惯性力作用的侧向力并逐步单调加大,使结构从弹性阶段开始,经历开裂、屈服直至达到预定的破坏状态甚至倒塌。这样可了解结构的内力、变形特性和能量耗散及其相互关系,塑性铰出现的顺序和位置,薄弱环节及可能的破坏机制。这种方法弥补了传统静力线性分析方法如底部剪力法、振型分解法等的不足并克服了动力时程分析方法过程中,计算工作量大的问题,仅用于近似评估结构抵御地震的能力。但是,传统的推覆分析方法基本上只适用于第一振型影响为主的多层规则结构,对于高层建筑或不规则的建筑,高阶振型的影响不容忽视,并且对于非对称结构,还必须考虑正、反侧反推覆的不同所带来的影响。此外推覆分析方法无法得知结构在特定强度地震作用下的结构反应和破坏情况,这限制了它在抗震性能设计中的使用。地震动能量是刻画地震强弱的综合指标,它综合体现了地面最大加速度和地震持时两个反映地面运动特性的`重要因素。结构地震反应的能量分析方法是一种能较好地反映结构在地震地面运动作用下的非线性性质及地震动三要素(幅值、频谱特性和持时)对结构抗震性能影响的方法。地震时,结构处于能量场中,地面与结构之间有连续的能量输入、转化与耗散。研究这种能量的输入与耗散,以估计结构的抗震能力,是结构抗震能量分析方法所关心的问题。结构在地震(反复交变荷载)作用下,每经过一个循环,加载时先是结构吸收或存储能量,卸载时释放能量,但两者不相等。两者之差为结构或构件在一个循环中的“耗散能量”(耗能),亦即一个滞回环内所含的面积。能量等于力与变形的乘积。一个结构(构件)所耗散的地震能量多,不仅因为它承担了较大的地震作用,还因为它产生了较大的变形。从这个意义上来看,耗能构件是用它自身某种程度破坏所作的牺牲,来维持整个结构的安全。所以,每次大的地震作用之后,人们看到那些没有其它途径耗散所吸收的地震作用的能量的结构,只有通过结构自身的破坏来释放所有的多余能量。因此,结构的抗震设计应当注意保证结构刚度、强度和变形能力的协调与统一,如结构的延性设计就是在传统的单一强度概念条件下进行的弹性抗震设计的基础上,充分考虑结构和构件的塑性变形能力,在设防烈度下允许结构出现可能修复的损坏,当地震作用超过设防烈度时,利用结构的弹塑性变形来存储和消耗巨大的地震能量,保证结构裂而不倒。
能量法在近半个世纪的研究中发现较快,但由于地震本身的复杂性能量与结构反应之间的关系仍需我们进行进一步的探索。
篇13:建筑结构抗震概念设计的论文
地震是一种破坏力较强的自然灾害,主要损害建筑结构,进而导致承重构件或地基失去作用。现阶段,人们还不能深入的认识到地震的损坏机理,直接影响了抗震计算的精确性。概念设计是一种指导总体方案开展的方法,良好的概念设计不仅给日后建筑工程结构计算及工程造价等奠定基础,同时还实现了抗震设计的目的,具有较广的应用意义,必须及时进行分析。
1.建筑抗震设计
目前随着经济的发展,抗震结构设计已经呈现出新的发展趋势,可利用基于性能结构抗震现场理论、材料抗震模糊可靠度等方法进行建筑抗震设计。但是建筑地震灾害依然在反复发作,虽然很多建筑设计师已经认识到以上技术的局限性,但是由于建筑结构还会受到地形、规划、工程造价、施工技术等多方面因素影响,导致“概念设计”开始被人们重视起来,并加大了对其的研究。概念设计不仅完善了建筑结构,同时综合全面的分析了地震所产生的影响,掌握了地质活动破坏机制,并可以综合全面的了解抗震设计规范与准则,在长期实践中还可以不断提升建筑结构的抗震水平。
2.建筑结构抗震概念设计遵循的原则
2.1建筑选址并确定地基稳定条件
合理的规划选址已经成为建筑设计成功的基础,对建筑结构抗震设计整体质量具有很大影响。实际操作中要求规避地震不利地段,尽量选择安全稳定的建筑场地,如果受各方面因素影响,导致实际操作中无法避开不利地段,必须结合实际情况采取针对性的措施,提高地基稳定性与安全性。现有基础设计规范中明确指出,结构单元中个别应地质因素而采用天然地基或桩基的做法不可取,尤其是不允许在地震高发段建设建筑物。地震作用力较强,一般会引起承载力降低或出现基土液化,进而影响了地基稳定性,容易出现建筑开裂、倾斜和倒塌等问题。同时受地震影响所产生的滑坡、泥石流等情况也与建筑选址密切联系,保证建筑基础稳定已经成为提高抗震力的核心条件。
2.2选择有利于建筑的立面或平面
为了避免地震发生时产生应力集中、扭曲或塑性变形等问题,要求建筑平、立面必须合理设置,一般要求建筑物的平、立面布置对称,同时质量和刚度均匀,尽量避免楼盖错层。实际操作中可从两反面操作,一方面,不设抗震逢,对建筑物进行结构抗震分析,了解局部应力和变形集中及扭转等的影响,并采取加强措施进行处理。另一方面,设置抗震缝,将建筑物划分为很多结构单元,可结合抗震设防强度、材料种类、结构型号及单位布置,并留有足够的宽度,要求伸缩缝与沉降缝满足防震缝要求。控制好建筑刚度与质量变化,各个楼层不能错层,条件允许时可在每层设置防震缝,可根据建筑结构实际情况设置。一般体型结构复杂的建筑必须给其设置计算模型,并展开抗震分析。
2.3选择科学合理的抗震结构体系
抗震结构体系要求从建筑重要程度、房屋高度、地基基础、技术、经济及使用等多方面进行判断。通常选择建筑结构体系时,必须满足以下条件:(1)具有详细的计算简图,并有恰当的传递地震途径;(2)具有较强的强度、耗能及变形能力;(3)设置多道地震防线,避免部分结构或构件对整体构件造成影响;(4)控制好强度与刚度,避免局部形成薄弱部位或者应力或塑性变形集中;(5)控制好结构在两主轴之间的动力特性。设计构件连接时,要求满足以下条件:(1)构件节点强度不能低于连接构件强度;(2)装配结构连接整体性必须得到保证;(3)预埋件锚固强度不能低于连接构件强度。选择抗震结构构件时,要求满足以下要求:(1)砌体结构必须结合施工要求,合理设置混凝土圈梁与构造柱,提高结构抗震水平;(2)设置钢结构构件时,要求控制好其尺寸,避免出现局部或整体构件失稳;(3)混凝土结构构件必须合理选择尺寸,配置好箍筋与纵向钢筋,避免剪切在弯曲前破坏,同时要求混凝土压溃先于钢筋屈服、钢筋锚固粘接在构件破坏前损坏。
2.4计算校核的必要性
目前计算机辅助设计系统已经广泛应用到结构设计中,而且应用范围较广,实际分析中,可应用计算机相关软件完成设计与校核。软件是辅佐校核的工具,实际操作中为了提高校核效果,必须由具有丰富经验的结构设计技术人员分析,同时掌握软件的适用范围、条件、计算模型等,深入理解设计规范,而且要端正自己对待工作的态度,只有如此,才能反复进行验证,进而将精确校核的'计算结果成功应用到工程项目建设中。
3.正确处理主体结构与非承重结构的关系
主体结构与非承重结构关系的处理已经成为抗震设计的基础,具有减少地震损失及避免附加震害的作用。附属结果构件要求必须与主体结构或锚固稳定连接,避免实际操作中出现设备损害或砸到人员等问题出现。设置围护墙与隔墙时,必须综合考核结构抗震所产生的不利影响,避免设置不恰当损害主体结构。例如,厂房柱间或框架填充不完整时,就会损坏柱子。此外,吊挂件、装饰贴面与幕墙均要与主体合理连接,避免地震时造成人员伤害。
4.控制好材料与施工质量
材料选择与施工质量控制对抗震结构设计具有很大作用,不仅提高了施工质量,还保证了其他工序的顺利开展。目前抗震结构设计中已经对材料与施工质量提出了要求,必须在设计文件中明确,具体操作如下:(1)黏土砖等级要求不低于MU10,同时控制好砌筑砂浆强度与等级,不呢低于M5;(2)混凝土抗震与强度等级均使用一级框架梁、柱与节点,要求不能低于C30,芯柱、基础与圈梁不应低于C30,其他构件不能低于C20;(3)混凝土小型砌块强度控制在MU7.5,要求砌筑砂浆强度在M7.5以上;(4)控制好钢筋强度,要求纵向钢筋使用Ⅱ、Ⅲ级变形钢筋,箍筋为Ⅰ、Ⅱ热轧钢筋,构造柱与芯柱使用Ⅰ、Ⅱ级钢筋。进行钢筋混凝土结构施工时,由于实际设计中缺少规定的钢筋型号,使用其他规格型号的替代时,不能使用屈服强度较高的钢筋替代原始钢筋。实际替换中可结合截面实际屈服强度合理换算,并要求替代后构建曲面屈服强度不能超过原截面屈服强度。此种操作的主要目的是减少了薄弱部位转移,避免了混凝土脆性损坏,如剪切破坏或混凝土压碎等问题。
5.结语
建筑结构抗震设计时一项较系统的工程,改变以计算为中心的传统设计、评估与校核,实现了设计者多年经验与设计规范的结合,避免了盲目开展计算工作,对抗震设计创造了独特的发展空间,并真实展现了结构的实时情况,进而科学合理的进行抗震设计。
参考文献
[1]张松林.浅谈建筑结构抗震概念设计的进展[J].江苏建筑,,(04).
[2]黄传刚.浅谈房屋建筑中结构抗震概念设计的运用分析[J].科技创业家,,(07).
[3]武玉梅.浅谈建筑结构抗震概念设计的重要性[J].中外建筑,2014,(05).
[4]杜建霞,张全贞.高层建筑钢筋混凝土结构抗震概念设计浅谈[J].建筑结构,2015,(03).
[5]谢晓杰.建筑结构抗震概念设计的重要性及其要点[J].河南建材,,(04).
篇14:建筑结构设计中的抗震设计论文
建筑结构设计中的抗震设计论文
摘要:在自然灾害的范畴内,地震属于危害性较大的一种。近些年,频繁出现的地震灾害严重的威胁到了人民的财产和生命安全,特别是人民居住环境遭到了损坏。为此,提升建筑物的抗震能力是刻不容缓的事情,随着国家在地震学领域、建筑学领域和地理系统等专业方向的科学发展。我国的建筑结构抗震能力得到了很大的提升,如何根据国内地理因素和环境因素的变化,设计出更为安全,抗震性能更高的建筑物,是很多施工单位及设计方普遍关心的问题。
关键词:建筑结构;结构设计;抗震设计;分析
建筑结构设计中的抗震技术主要基于经济、实用以及安全的理念,建筑结构设计作为整体建筑的基础,其自身能反映出建筑的整体风格,是建筑质量的基本保障,因此要高度重视建筑结构设计中的抗震设计。只有在灾害没有发生之前做好防控的工作,才能减少在灾害发生时造成的物质损失,提高建筑抵御灾害的能力,促进了社会生活与自然环境的和谐发展。
1.建筑结构中关于抗震设计需要考虑的因素
在建筑结构中进行抗震能力的考虑方面,必须结合建筑抗震场地的选择、建筑结构体系的适当构建和建筑物的平面布置规则等几个方面加以重视。
1.1合理选择建筑抗震场地
在建筑结构设计中对于抗震设计的考虑上,必须注重建筑抗震场地的选择。选择了合理的抗震场地进行建筑施工,将会很大程度上提升建筑结构的抗震能力。当地震发生时,会导致地表的各个位置发生不规律的移动,所坐落位置的地质结构和性质不同,发生的地震灾害程度也会有所差异。当地震中发生剧烈的地面震动时,如果场地选择本来就不妥当,建筑结构遭受的破坏就更加的严重,严重的会导致建筑物的坍塌。
1.2严格规范建筑结构体系的构建
在抗震设计实施前的建筑结构抗震方案选择是非常关键的因素之一。在建筑结构体系和安全方面的方案考虑中,需要从以下几个方面加以考虑:(1)抗震结构的选择上,避免以偏概全,因对特殊建筑结构考虑而忽视了整体的结构构件,需要从整体进行建筑抗震性能的把握。要确保建筑结构有一定的赘余,当建筑物的某个局部出现了损坏的情况下,整体建筑物不会因此受到稳定性和抗震性能的变化。
(2)根据地震的传递路径准确的进行设计图规划。对于竖向结构的设计,设计要从垂直重力符合角度考虑其相应条件下的压应力均衡问题,对转化结构而言,考虑到上部结构竖向构件会传来垂直重力荷载,确保该荷载力在转换层有一次的转换。
(3)设计中要注意确保建筑结构体系的'强度和刚度在合理的水平,符合建筑物的整体设计要求。避免因局部位置的刚度不足难以支撑该部位应该支撑的建筑区域结构,实现刚度和强度的合理分配。
1.3确保建筑物的平面规则性布置
在实际的建筑结构抗震设计分析上,还要充分的考虑到建筑物的平面布置规则性,这在抗震设计中非常重要的一个因素。通过尽量保持建筑设计的规则性,可以更好的知道建筑施工,对于不规则的结构设计,必须采取与之匹配的负责对策加以设计对应。
2.建筑结构设计中加强抗震设计的几点建议
建筑结构的抗震性能对建筑物的使用者和周边的环境来说,有着非常直接的安全关系。如果建筑物的抗震性能较差,在发生低级别的地震时,就可能会导致建筑物的变形等问题,周边的环境设施和人的生命财产安全都会受到相关的影响。在切实提升建筑物的抗震能力方面,主要可以从以下几个方面加以考虑:进行抗震结构的准确选择,通过合理布局来减少抗震能量的发挥,尽可能的设置多重抗震防线。
2.1进行抗震结构的准确选择
抗震结构的准确定位能够有效的提升建筑物的整体抗震性能,通过优选强度较大,刚度较高的建筑主体结构设计方案,可以最大限度的避免建筑结构的变形发生概率。确保建筑物的整体结构性能。设计人员在进行抗震结构分析时,必须将抗震结构和非抗震结构进行同时考虑,针对短柱等较容易发生安全问题的关键部位要采取合理的抗震措施,通过确保建筑结构和非结构构件的整体刚度和强度,来提升建筑结构的抗震能力。
2.2尽量的优化布局以降低地震能量
在进行抗震结构设计时,通过加强位移为基点的结设计考虑和定量分析的方式,能够有效的降低地震灾害中能量的输入,实现建筑物抗震性能的总体效果。在设计的定量分析中,通过反复几次的构件总承载力核算,通过采取合理的措施来控制建筑下层的位移延性比例,使得建筑物在面临地震灾害时,其结构变形情况最小化。建筑地基的选择,要尽量的以坚硬地基为主,尽量避免建筑物坐落在地震周期比较活跃的位置,减少建筑物中地震能量的输入,从而降低地震的破坏程度。
2.3抗震防线的多重设置
抗震防线可以实现抗震效果的最大化。设计中,可以讲延伸性能好的建筑结构纳入到抗震防线体系内,另外将一些建筑构件作为二、三道防线。通过多重抗震防线的设置,可以有效地降低地震发生后的冲击力,从而保障人民的财产和生命安全。
3.结语
总而言之,一旦地震发生,将会给人民的生命和财产带来很大的威胁,在建筑结构设计中强调抗震性能设计的意义是非常重大的。在考虑抗震的具体设计思路时,设计人员必须通过多角度进行抗震方法的设计,并加强创新性抗震度角度的分析,通过合理的制定抗震设计来增强建筑结构的抗震性能。同时,在建筑物的施工过程中,施工队伍也要强化建筑物的抗折能力建设,为人民的生命和财产安全保驾护航,促进国家建筑行业的长远持续发展。
★ 土木工程专业论文
【隧道抗震设计研讨论文(通用14篇)】相关文章:
小区规划设计开题报告2023-10-24
勘察设计站工作总结及工作安排2023-07-12
盾构法隧道衬砌荷载影响因素分析论文2022-05-14
二级公路加宽工程设计分析论文2022-08-22
土木工程介绍英语范文2022-07-29
带加强层高层建筑结构设计有哪些要点?2023-10-28
城市轨道交通工程给排水和消防安全技术研讨会会议通知2022-09-13
研讨会会议通知2022-08-29
物理教学研讨会会议通知2023-11-17
医院继续教育培训总结2023-03-18