屏蔽泵故障分析及处理论文

时间:2022-05-08 11:57:46 论文 收藏本文 下载本文

屏蔽泵故障分析及处理论文(精选13篇)由网友“这是马”投稿提供,下面是小编整理过的屏蔽泵故障分析及处理论文,希望对大家有所帮助。

屏蔽泵故障分析及处理论文

篇1:屏蔽泵故障分析及处理论文

屏蔽泵故障分析及处理论文

摘要:根据天然气处理装置在生产中输送介质为易燃易爆,屏蔽泵具有无泄漏的优点,精馏塔塔顶回流、凝液回收、外输、轻烃及液化气装车都可采用屏蔽泵。但屏蔽泵运行1年半时间内相继出现轴承损坏现象,针对此现象进行了原因分析,并提出相应的解决措施。

论文关键词:屏蔽泵,故障,结构,分析,处理

屏蔽泵是由屏蔽电机和泵组合的密封整体,具有无泄漏的优点,适合输送易燃、易爆、剧毒、易挥发的液体,根据我队输送介质的特点,也大量选择屏蔽泵作为主要的输送泵。

(一)屏蔽泵的结构形式。

根据工艺设计要求,天然气处理装置屏蔽泵主要有卧式基本型(见图一)和立式逆向循环型(见图二)两种。基本型主要用于输送不易产生气蚀的液相介质(如:稳定油、污水等),逆向循环型用于输送易产生气蚀的气相介质(如:液化气、轻烃等)。

图一:卧式基本型屏蔽泵结构图(B型)      图二:立式逆向循环型屏蔽泵结构图(N型)

(二)屏蔽泵的工作原理。

屏蔽电泵就是一种离心泵,因此它的工作原理也与离心泵相同。接通电源后,叶轮随泵轴旋转,液体一方面随叶轮作圆周运动,一方面在离心力的作用下自叶轮中心向外周抛出,液体从叶轮获得压力能和速度能,当液体流经蜗壳到排出口时,部分速度能也变为压力能。在液体自叶轮抛出时,叶轮中心部分造成低压区,与吸入液面的压力形成压力差,于是液体不断的被吸入,并以一定的压力排出。

基本型屏蔽泵循环液的循环路线:输送的液体的一部分从泵的排出口     循环管    后端盖    后侧轴承与后侧轴套之间的间隙    定子屏蔽套与转子屏蔽套之间的间隙    前侧轴承与前侧轴套之间的间隙    叶轮的平衡孔    叶轮的吸入口。

逆向循环屏蔽泵循环液的流动路线:循环液从叶轮的排出口    通过前端盖的小孔    定子屏蔽套与转子屏蔽套之间的间隙    后侧轴承与后侧轴套之间的间隙    后端盖    回到进液罐。

二、屏蔽泵故障原因分析

屏蔽泵在使用过程中出现的主要故障表现在外输泵轴承破裂、屏蔽套损坏;稳定塔回流泵轴承破碎,定子屏蔽套受损;乙二醇水循环泵推力盘损坏;液化气装车泵轴承损坏等。这些故障不仅给生产运行带来操作上的.困难,更带来经济上的损失,从泵的运行控制、工艺参数、工艺流程等方面进行深入分析,造成屏蔽泵故障原因主要在以下几个方面:

(一)凝析油外输泵故障原因分析。

生产装置外输泵1号泵运行一段时间后出现外输流量显示为零,现场泵轴承显示器显示值异常,立即停泵拆卸后发现泵轴承破裂、屏蔽套损坏。故障原因由于控制系统故障导致凝析油外输泵入口紧急关断阀掉电关闭,泵抽空,泵轴承出现干磨,轴承损坏。

(二)稳定塔回流泵故障原因分析。

生产装置运行一年半时间内出现三次稳定塔回流泵轴承破碎,定子屏蔽套受损故障。故障原因分析:稳定塔回流泵选择排量为10m3/h,运行状态下,泵出口流量为2.3m3/h(有时连1 m3/h都不到),只有额定流量的四分之一,导致未排出泵的出口介质温度升高,由于多级泵的独特结构造成高温液体去冷却润滑电机,与电机轴承摩擦产生的热、电机绕组产生的热叠加,使循环液流体蒸发造成泵干转,引起轴承损坏。由于SiC轴承高温下容易破碎,破碎的轴承旋转时造成定子屏蔽套损坏。

(三)乙二醇循环泵故障原因分析。

在生产中岗位人员在巡检过程中发现3号乙二醇循环泵出口压力为0.4MPa,而1号循环泵出口压力在正常压力0.8MPa运行,立即停运3号屏蔽泵,对其出口管线排气有大量的气体排出,说明该泵存在气蚀现象,拆卸该泵证实由于气蚀造成推力盘损坏。故障原因分析:乙二醇循环泵输送介质为循环乙二醇水,在经过用户换热后回到泵入口,乙二醇是受热易挥发的物质,由于长时间运行,在管道集聚的乙二醇蒸汽增加,由1个敞口的十余米高的膨胀罐来完成气体的排除和液体的补充。由于建站施工安装时的失误,将乙二醇水膨胀罐的补水流程与油冷却泵的出口连接在一起,因为油冷却泵出口压力高,将正常的补水流程隔断了,使回水管网中的气体无法排除,补充液无法补充,导致泵产生气蚀(见图三)。

图三:乙二醇循环泵补水流程简图

(四)液化气装车泵故障原因分析。

现场操作人员按照规程启动2号液化气装车泵装车,起泵后4分钟发现管线振动剧烈,压力波动严重,操作人员立即停泵。清洗过滤器时发现滤网大部分被冰糊住。解体检查泵时发现后端轴承、轴套破碎。故障原因分析:因该泵属于间歇式运行泵,液化气储罐中有少量的游离水进入泵入口过滤器,受过滤器滤网及冬季环境温度影响,游离水结冰糊住滤网,造成供液不足,装车泵轴承润滑冷却不足,轴承温度升高破裂。

三、屏蔽泵故障解决办法

及时解决引起屏蔽泵故障的原因,采取积极的措施确保屏蔽泵高效运行,延长泵的使用寿命,增强装置运行的稳定性。

(一)外输泵故障控制措施。

结合外输泵运行特点以及自控系统的控制故障特点,外输泵的故障控制措施从两个方面解决:一是对泵的入口紧急关断阀设置掉电保持阀位开度的控制模式;二是泵的停机与泵入口紧急关断阀关状态进行连锁控制,确保了屏蔽泵因入口阀关断抽空损坏泵轴承事件的发生。

(二)稳定塔回流泵故障控制措施。

根据设计17万吨处理量下稳定塔回流泵排量10m3/h,在目前处理量为15万吨情况下,泵的选型排量过大。解决稳定塔回流泵故障措施:一是保持回流罐液位情况下,增加稳定塔回流量,增加泵运行排量(见图四);二是定期对泵尾管进行通气清理,确保泵尾管畅通,使泵体冷却效果良好;三是每十天切换泵运行。

图四:稳定塔回流泵运行流程简图

(三)乙二醇循环泵故障控制措施。

针对乙二醇循环泵气蚀故障解决控制措施:一是现场手动定期对泵循环流程排气;二是对乙二醇循环泵的补液流程进行改造,将施工安装错误的乙二醇水补液流程改回到油冷却泵入口处,解决管网无法补液、无法排气造成泵气蚀现象。

图五:乙二醇循环泵技改简图

(四)液化气装车泵故障控制措施。

针对冬季生产液化气装车泵过滤器滤网游离水冻堵烧泵现象,采取三个方面的控制措施:一是定期排放液化气储罐游离水;二是加密清洗过滤器次数;三是起泵前对过滤器进行检查。通过采取以上控制措施,冬季生产后未出现液化气装车泵轴承干磨破裂情况。

篇2:ADSL故障分析处理

一、上网速度慢

原因分析:

1、用户下户线为铁芯线,线路接头过多,接头接触不良,接头氧化严重,造成线路传输质量低,信号衰耗过大,影响上网速度;

2、MODEM长时间运转不关机,使MODEM芯片过热。造成其性能不能正常发挥,影响上网速度,特别是MODEM自动拨号的用户,可能会造成MODEM死机而无法上网。

3、设备与电话线和网线之间接触不良影响用户上网速度。电话线与语音分离器的接口是否接触良好,MODEM与用户计算机以太网卡的接口是否接触良好。

4、用户计算机操作系统故障及在线软件的使用也会影响用户的上网速度。用户计算机的网卡是否运行正常,其驱动程序是否安装正确,TCP/IP协议是否安装正确;用户是否安装多个防火墙,是否设置代理服务器,是否同时运行在线杀毒软件等

5、用户的网络要求与目前所提供的网络带宽之间有差距。目前,我们提供给用户的理论带宽是上行640Kbps,下行1024Kbps;

其本地下载速度七十几Kbyte/s---一百二十Kbyte/s(1byte=8bps)就目前情况来说,我们所提供的速度可以满足用户实现本地的高速下载,VOD点播,在线电视直播,在线收音机,在线MP3播放,大型在线游戏,视频会议等本地网的宽带接入,

但对于远程的VOD点播,传奇等大型游戏,ESPN等在线电视直播,视频会议等宽带服务,由于受到远程传输带宽,服务提供方的接入带宽,服务器的处理能力的限制,可能达不到用户所要求的速度,或者无法连接。用户可以留意拨号软件E300或E500查看Rx的码率,或用电信宽带网速测试监测自己的实际网速。

障碍处理:根据上述原因逐步检查用户线路,接头,MODEM硬件及设置,用户计算机的硬件安装和软件设置,排除故障。

二、上网时经常掉线,且电话杂音大

原因分析:

检查电话线的连接,分离器前是否有接分机、传真机。用直线连接是否正常。正确接线如下:

三、MODEM不上线,导致用户无法上网故障的处理流程:

说明:

1、判断MODEM是否上线可以观察MEDEM上的指示灯状态,如LINK,WAN等。

2、用户线路的检查范围包括从MODEM→语音分离器。要注意用户线是否有铁芯线,接头是否过多,接头是否接触良好,检查线路对地绝缘性能,下户线是否过长等。

四、经常掉线

1、线路质量差,线路老化,外线距离过远,接头过多,接头接触不良,导致信号衰减过大。

篇3:发电机氢气干燥器故障分析和处理论文

发电机氢气干燥器故障分析和处理论文

【摘 要】6月1日在更换干燥器露点仪和发电机露点仪后,发电机和干燥器出口露点大幅上升,最终导致干燥器出口露点高报警,本文首先描述了问题发生的经过,并初步提出了可能的原因。在经过运行、维修人员多次分析和检查后,逐步排查发现入口分离器堵塞和部分干燥剂变黄,露点探头不能真实反映发电机内露点,以及干燥器加热器加热效果低等问题,最后提出了相应的改进措施。

【关键词】干燥器;露点仪;再生;干燥;干燥剂

1 问题产生的经过

206月1日,维修人员对发电机001/002露点仪作了预防性更换工作,更换后发现发电机和干燥器露点逐渐上升,并且更换一个半月后出现发电机露点高报警,002露点仪(发电机露点)前后的数据对照如下:

002露点仪更换前为:-52.2℃;更换后为:-26℃(24H后);一个半月后:-15℃

报警后运行人员按照报警处理流程,检查干燥器疏水罐,发现疏水罐无水排出,怀疑干燥器已经失效,年7月13日运行发出工作申请,要求对发电机干燥器进行解体检查。

2 发电机干燥器简介

2.1 发电机干燥器的功能

一个可自行再生的气体干燥器与发电机相连接,将发电机氢冷却剂的露点保持在可接受的水平。

气体干燥器是一个全自动、连续工作、自行再生的双室型干燥器,并带有一个增压鼓风机。气体干燥器从结构上来说是由两个完全相同的垂直腔室构成,其中装有活性的凡土干燥剂。当发电机运行时,发电机内氢气被一根管线引入到发电机干燥器,其中一股氢气被引入干燥器一个腔室进行干燥。而另一个股氢气被引入另一个腔室对干燥剂进行再生。当在再生时,该腔室首先通过电加热40分钟,然后冷却80分钟,氢气通过该腔室时,将干燥剂的水份带出,经过一个冷凝器、分离器,分离器将氢气中水份分离出来,进入一个小的疏水箱。这样每隔两小时,就有一个经过再生的再生腔室来替换在前两小时用来干燥发电机气体的干燥腔室,以此循环往复。干燥器氢气流程如下图所示。

2.2 001/002露点仪及其功能

露点是:使空气里原来所含的未饱和水蒸汽变成饱和时的温度;当空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,习惯上其单位常用摄氏度(℃)表示。

001/002露点仪,用来监测流经气体的露点。001露点仪是用来监测气体干燥器出口露点的,由电缆与气体柜(电气部分)内的处理机相连。002露点仪用来监测发电机内氢气的露点,连续地监测发电机氢冷却剂的露点。

3 故障处理过程

根据故障现象的描述,分析其最有可能的两个原因是:(1)001/002露点仪探头的故障造成的数据的不准确;(2)干燥器内的干燥剂失效,造成干燥效果不好。首先对原因一进行分析,在预防性更换001/002露点仪后一个半月就出现干燥器出口露点高报警,露点是一个逐渐上升的过程,因此可以排除露点仪故障的可能。其次对原因二进行分析,由于疏水箱从2009.4月开始就没有任何疏水排出来,而一个正常运行的干燥器不可能长时间不疏水,因此干燥剂失效可能性极大,问题的焦点就集中到干燥器的再生部分和干燥剂本身上。

3.1 第一次故障处理

2009年7月16日,对干燥器进行了解体检查,检查的重点是干燥器的两个腔室,同时更换干燥剂。在解体检查干燥剂时发现有部分干燥剂由白色变成黄色,约占总量的1/5,这些干燥剂已经完全被油气污染而失效,其余部分也由原来的雪白色变为淡灰色。同时发现干燥器入口氢油分离网全部被黄色油污粘附,布满约100mm厚的.分离网,且分离器桶壁也粘附大量的黄色结晶物,导致严重堵塞。

在第一次解体检修后,发现干燥剂大部分已经失效,同时干燥器入口油气分离滤网也堵塞严重,所以造成干燥器无法正常工作,在处理这些问题后,2009年7月18日将干燥器投入运行,投运后露点变化:

002露点仪(发电机露点):解体前-10℃;解体后为:-20℃(24H后);

001露点仪(干燥器出口露点):解体前-9℃;解体后为:-46℃(24H后)。

3.2 第二次故障处理

2009年7月21日现场巡视发现干燥器中A室在再生时,加热温度在395~400℃之间变化,没有达到要求的500度。观察B室生产时干燥器出口露点为-32.3℃,发电机露点为-19.9℃;观察A室生产时干燥器出口露点为-17.2℃,发电机露点为-19.4℃,干燥器出口露点高于发电机内氢气露点,说明干燥器A室已经不具备干燥功能,若继续按该状态运行,A室的干燥剂将快速失效,干燥器出口露点高报警将再次出现。

在干燥器完成解体检修投运三天后,再次出现干燥器出口露点缓慢上升现象,而且上升速率明显在加快,短时间内干燥器内的干燥剂再次失效,但按照以往经验干燥剂一般运行一年左右才可能出现逐步失效,而露点的快速上升说明干燥剂失效非常迅速,不符合以往干燥剂失效特性。因此在大家讨论分析后怀疑干燥器切换阀存在内漏,导致再生湿气体通过旁路直接进入干燥器出口管道,影响干燥器出口露点。为了验证阀门是否存在内漏,于是决定对干燥器进行再次解体检查,重点检查再生回路。

2009年8月2日再次对干燥器解体检查,通过解体检查发现干燥剂没有失效,但B腔室的出口隔离阀存在内漏,这样在A室干燥、B室再生时,B室内的再生湿气体通过内漏的隔离阀直接进入干燥器出口管道,从而造成A室干燥时干燥器出口的露点下降明显的假象。

2009年8月6日,干燥器再次已投运,发电机氢气露点-12.5℃,干燥器出口氢气露点-41.7℃,A/B列切换时干燥器出口氢气露点温度无异常变化。

3.3 第三次故障处理

2009年8月10日,干燥器在投运四天后再次出现露点逐渐上升现象,干燥器露点达到-15℃,发电机露点为-14℃,而且A/B室干燥时,干燥器出口露点变化不大,说明干燥剂再次失效,而且露点恶化速率与第二次基本一致。

从上次解体可以肯定干燥剂短时间不会失效,而造成干燥剂无法正常工作可能还是出现在再生回路上,如果干燥器再生失效,导致干燥剂饱和后失去干燥能力,则干燥器出口露点自然上升。经过上次解体可以排除阀门上存在问题可能,此时最大的疑点在干燥器加热回路上。

2009年8月11日维修人员对干燥器A、B腔室的加热器温度探头进行检查,发现加热器探头深入到A、B腔室太短,造成探头不能真实反应A、B腔室内的温度,当探头检测到温度达到500度时,实际上A、B腔室底部的温度还偏低,这样内部的干燥剂无法加热到要求温度,从而导致干燥剂中的水份无法分离出来被再生气体带走,随着多次的再生不充分最终导致干燥剂饱和。

在维修人员调整探头位置后,2009年8月12日检查,发电机及干燥器露点情况明显好转,发电机氢气露点温度为-17.7℃(调整前为-14℃左右);干燥器出口氢气露点温度为-30℃(调整前为-15℃左右)。A、B腔室外壳温度上升明显加快,15分钟内即达到70℃(调整前为60分钟后达到 70℃),桶壁最高温度达到100℃(调整前最高温度为70℃),说明加热器效率已得到明显改善。

4 故障原因总结

实际上本次干燥器故障模式,是多重故障叠加造成,具体过程如下:

发电机和干燥器露点仪故障造成了不能真实反应发电机和干燥器的露点,从而失去了发现设备异常的有效手段,当进行例行更换露点仪工作时才将设备故障问题暴露。

在第一故障处理过程中,发现了干燥剂的失效和入口滤网的堵塞,但忽视了再生回路的检查,通过干燥器的再次投运才发现再生回路存在内漏的可能。

在第二次故障处理过程中,发现了隔离阀的内漏造成的再生回路被旁路,但这样内漏应该不足以造成干燥剂短时间失效,说明干燥剂无法正常干燥还有更深层次的原因。

在第三次故障处理中才真正找到干燥剂短时间失效的原因,加热器加热温度不足,而加热温度不足是温度探头位置不适当造成的。因此干燥器再生回路失效主因是加热器加热温度不足,辅因是阀门存在内漏,这两项故障的叠加造成了再生回路的故障。

本次干燥器故障是由四个故障原因叠加造成的,其中露点仪的失效造成设备监测功能的失效,干燥剂的失效和入口滤网的堵塞造成了干燥功能的失效,而隔离阀门内漏和加热器加热效率不足造成了再生回路的失效,这样的故障模式非常少见,收集和总结这样的故障处理过程,对以后干燥器的故障分析和处理具有一定的借鉴意义。

篇4:电线接头故障与处理分析论文

电线接头故障与处理分析论文

论文关键词:电缆接头;分析;意见

论文摘要:针对高压电缆接头故障进行综析,并就各类原因提出改进措施和防范对策。

一、前言

在铁路供电网路中交联电缆接头状况,对供电安全是非常重要的。经实际运行证明,在大多数情况下是可以随电缆长期等效使用的。交联电缆由于载流能力强,电流密度大,对导体连接质量要求就更为严格。对接头所要求机械的电气的条件越来越高,特别是输配电电缆,各种接头将经受很大的热应力和较长持续时间的短路电流的影响。

所以,交联电缆附件也不是附属的,更不是次要的部件,它与电缆是同等重要,是必不可少的部件,也是与安全运行密切相关的关键产品。

二、交联电缆接头故障原因综析

交联电缆接头故障原因,由于电缆附件种类、形式、规格、质量以及施工人员技术水平高低等因素的影响,表现出不同的现象。另外,电缆接头运行方式和条件各异,致使交联电缆接头发生故障的原因各不相同。交联电缆允许在较高温度下运行,对电缆接头的要求较高,使接头发热问题就显得更为突出。接触电阻过大,温升加快,发热大于散热促使接头的氧化膜加厚,氧化膜加厚又使接触电阻更大,温升更快。如此恶性循环,使接头的绝缘层破坏,形成相间短路,引起爆炸烧毁。由此可见,接触电阻增大、接头发热是造成电缆故障的主要原因。造成接触电阻增大的原因有以下几点:

1、工艺不良。主要是指电缆接头施工人员在导体连接前后的施工工艺。

2、连接金具接触面处理不好。无论是接线端子或连接管,由于生产或保管的条件影响,管体内壁常有杂质、毛刺和氧化层存在,这些不为人们重视的缺陷,对导体连接质量有着重要影响。特别是铝表面极易生成一层坚硬而又绝缘的氧化铝薄膜,使铝导体的连接要比铜导体的连接增加不少难度,工艺技术的要求也要高得多。不严格按工艺要求操作,就会造成连接处达不到规定的电气和机械强度。实际运行证明,当压接金具与导线的接触表面愈清洁,在接头温度升高时,所产生的氧化膜就愈薄,接触电阻Rt就愈小。

3、导体损伤。交联绝缘层强度较大剥切困难,环切时施工人员用电工刀环剥,有时用钢锯环切深痕,因掌握不好而使导线损伤。在线芯弯曲和压接蠕动时,会造成受伤处导体损伤加剧或断裂,压接完毕不易发现,因截面减小而引起发热严重。

4、导体连接时线芯不到位。导体连接时绝缘剥切长度要求压接金具孔深加5mm,但因零件孔深不标准,易造成剥切长度不够,或因压接时串位使导线端部形成空隙,仅靠金具壁厚导通,致使接触电阻Rt增大,发热量增加。

5、压力不够。现今有关资料在制作接头工艺及标准图中只提到电缆连接时每端的压坑数量,而没有详述压接面积和压接深度。施工人员按要求压够压坑数量,效果如何无法确定。不论是哪种形式的压力连接,接头电阻主要是接触电阻,而接触电阻的大小与接触力的大小和实际接触面积的多少有关,还与使用压接工具的出力吨位有关。

6、压接机具压力不足。压接机具生产厂家较多,管理混乱,没有统一的标准,有些机械压钳,压坑不仅窄小,而且压接到位后上下压模不能吻合;还有一些厂家购买或生产国外类型压钳,由于执行的是国外标准,与国产导线标称截面不适应,压接质量难以保证。

7、连接金具空隙大。现在,多数单位交联电缆接头使用的连接金具,还是油纸电缆按扇型导线生产的端子和压接管。从理论上讲圆型和扇型线芯的有效截面是一样的,但从运行实际比较,二者的压接效果相差甚远。由于交联电缆导体是紧绞的圆型线芯,与常用的金具内径有较大的空隙,压接后达不到足够的.压缩力。接触电阻Tt与施加压力成反比,因此将导致Rt增大。

8、产品质量差。假冒伪劣金具不仅材质不纯,外观粗糙,压后易出现裂纹,而且规格不标准,有效截面与正品相差很大,根本达不到压接质量要求;在正常情况下运行发热严重,负荷稍有波动必然发生故障。

9、截面不足。以ZQ-3×240油纸铜芯电缆和YJV22-3×150交联铜芯电缆为例,在环境温度为25℃时,将交联电缆与油纸电缆的允许载流量进行比较得出的结论是:ZQ2一3×240油纸铜芯电缆可用YJV22-3×150交联铜芯电缆替代。因为YJV22-3×150交联电缆的允许载流量为476A;而ZQ2-3×240油纸电缆的允许载流量为420A还超出47A。如果用允许载流量计算,150平方毫米交联电缆与240平方毫米油纸电缆基本相同,或者说150平方毫米交联电缆应用240平方毫米的金具连接才能正常运行。由此可见连接金具截面不足将是交联电缆接头发热严重的一个重要原因。

10、散热不好。绕包式接头和各种浇铸式接头,不仅绕包绝缘较电缆交联绝缘层为厚,而且外壳内还注有混合物,就是最小型式的热缩接头,其绝缘和保护层还比电缆本体增加一倍多,这样无论何种型式的接头均存在散热难度。现行各种接头的绝缘材料耐热性能较差,J-20橡胶自粘带正常工作温度不超过75℃;J-30也才达90℃;热缩材料的使用条件为-50~100℃。当电缆在正常负荷运行时,接头内部的温度可达100℃;当电缆满负荷时,电缆芯线温度达到90℃,接头温度会达140℃左右,当温度再升高时,接头处的氧化膜加厚,接触电阻Tt随之加大,在一定通电时间的作用下,接头的绝缘材料碳化为非绝缘物,导致故障发生。

三、技术改进措施

综上所述增加连接金具接点的压力、降低运行温度、清洁连接金属材料的表面、改进连接金具的结构尺寸、选用优质标准的附件、严格施工工艺是降低接触电阻Rt的几个关键周素。提高交联电缆接头质量的对策由于交联电缆接头所处的环境和运行方式不同,所连接的电气设备及位置不同,电缆附件在材质、结构及安装工艺方面有很大的选择余地,但各类附件所具备的基本性能是一致的。所以,应从以下几方面来提高接头质量:

1、选用技术先进、工艺成熟、质量可靠、能适应所使用的环境和条件的电缆附件。对假冒伪劣产品必须坚决抵制,对新技术、新工艺、新产品应重点试验,不断总结提高,逐年逐步推广应用。

2、采用材质优良、规格、截面符合要求,能安全可靠运行的连接金具。对于接线端子,应尽可能选用堵油型,因为这种端子一般截面较大,能减小发热,而且还能有效的解决防潮密封。连接管应采用紫铜棒或1#铝车制加工,规格尺寸应同交联电缆线芯直径配合为好。

3、选用压接吨位大、模具吻合好、压坑面积足、压接效果能满足技术要求的压接机具。做好压接前的截面处理,并涂敷导电膏。

4、培训技术有素、工艺熟练、工作认真负责,能胜任电缆施工安装和运行维护的电缆技工。提高施工人员对交联电缆的认识,增强对交联电缆附件特性的了解。研究技术,改进工艺,制定施工规范,加强质量控制,保证安全运行。

四、结束语

由于交联电缆推广应用时间较短,电缆附件品种杂乱,施工人员技术水平高低不一等原因,加之接头的接触力和实际接触面积是随着接头在运行中所处的各种不同的运行条件而在变化。

所以交联电缆各种接头发生故障的原因也就各不相同,除发热问题外,对于密封问题、应力问题、联接问题、接地问题等引起的接头故障也应予以重视。如果能从以上几个方面来改进,就会使接头发热问题得到有效的控制。

篇5:IE故障全面分析及处理

一、网络设置的问题

这种原因比较多出现于需要手动指定IP、网关、DNS服务器联网方式下,及使用代理服务器上网的,仔细检查计算机的网络设置。

二、DNS服务器的问题

当IE无法浏览网页时,可先尝试用IP地址来访问,如果可以访问,那么应该是DNS的问题,造成DNS的问题可能是连网时获取DNS出错或DNS服务器本身问题,这时你可以手动指定DNS服务(地址可以是你当地ISP提供的DNS服务器地址,也可以用其它地方可正常使用DNS服务器地址。在网络的属性里进行(控制面板―网络和拔号连接―本地连接―右键属性―TCP/IP协议―属性―使用下面的DNS服务器地址)。不同的ISP有不同的DNS地址。有时候则是路由器或网卡的问题,无法与ISP的DNS服务连接,这种情况的话,可把路由器关一会再开,或者重新设置路由器。

还有一种可能,是本地DNS缓存出现了问题。为了提高网站访问速度,系统会自动将已经访问过并获取IP地址的网站存入本地的DNS缓存里,一旦再对这个网站进行访问,则不再通过DNS服务器而直接从本地DNS缓存取出该网站的IP地址进行访问。所以,如果本地DNS缓存出现了问题,会导致网站无法访问。可以在“运行”中执行ipconfig /flushdns来重建本地DNS缓存。

三、IE浏览器本身的问题

当IE浏览器本身出现故障时,自然会影响到浏览了;或者IE被恶意修改破坏也会导致无法浏览网页。这时可以尝试用“上网助手IE修复专家”来修复,或者重新IE(查看本站IE重装技巧)

四、网络防火墙的问题

如果网络防火墙设置不当,如安全等级过高、不小心把IE放进了阻止访问列表、错误的防火墙策略等,可尝试检查策略、降低防火墙安全等级或直接关掉试试是否恢复正常。

五、网络协议和网卡驱动的问题

IE无法浏览,有可能是网络协议(特别是TCP/IP协议)或网卡驱动损坏导致,可尝试重新网卡驱动和网络协议,

六、HOSTS文件的问题

HOSTS文件被修改,也会导致浏览的不正常,解决方法当然是清空HOSTS文件里的内容。

七、系统文件的问题

当与IE有关的系统文件被更换或损坏时,会影响到IE正常的使用,这时可使用SFC命令修复一下,WIN98系统可在“运行”中执行SFC,然后执行扫描;WIN/XP/则在“运行”中执行sfc /scannow尝试修复(可查询本站WINXP修复技巧)。

其中当只有IE无法浏览网页,而QQ可以上时,则往往由于winsock.dll、wsock32.dll或wsock.vxd(VXD只在WIN9X系统下存在)等文件损坏或丢失造成,Winsock是构成TCP/IP协议的重要组成部分,一般要重装TCP/IP协议。但xp开始集成TCP/IP协议,所以不能像98那样简单卸载后重装,可以使用 netsh 命令重置 TCP/IP协议,使其恢复到初次安装操作系统时的状态。具体操作如下:

点击“开始运行”,在运行对话框中输入“CMD”命令,弹出命令提示符窗口,接着输入“netsh int ip reset c:resetlog.txt”命令后会回车即可,其中“resetlog.txt”文件是用来记录命令执行结果的日志文件,该参数选项必须指定,这里指定的日志文件的完整路径是“c:resetlog.txt”。执行此命令后的结果与删除并重新安装 TCP/IP 协议的效果相同。

小提示:netsh命令是一个基于命令行的脚本编写工具,你可以使用此命令配置和监视Windows 系统,此外它还提供了交互式网络外壳程序接口,netsh命令的使用格式请参看帮助文件(在令提示符窗口中输入“netsh/?”即可)。

第二个解决方法是修复以上文件,WIN9X使用SFC重新提取以上文件,WIN2000/XP/2003使用cmd /c sfc /scannow命令修复文件,当用cmd /c sfc /scannow无法修复时,可试试网上发布的专门针对这个问题的修复工具WinSockFix,可以在网上搜索下载。

篇6:路由器故障:广域网故障处理分析

广域网是一种跨地区的数据通讯网络,使用电信运营商提供的设备作为信息传输平台,对照OSI参考模型,广域网技术主要位于底层的3个层次,分别是物理层,数据链路层和网络层。下图列出了一些经常使用的广域网技术同OSI参考模型之间的对应关系。 下面有关广域网故障处理的分析,让我们以问答的形式向大家说明:

问:不同速率的POS接口是否能够加入同一个IP-Trunk?

答:可以将不同速率的POS接口加入到同一个IP-Trunk,但是建议不要将转发能力不同的接口捆绑到同一个IP-Trunk中。此时每个接口的转发能力,只能达到能力最低的接口的水平。例如,将一个10G的POS接口和一个2.5G的POS接口加入到同一个IP-Trunk中,那么此时10G的POS接口只能达到2.5G的传输能力,而整个IP-Trunk的传输能力为5G,而不是12.5G。

问:采用HDLC协议互连时,发送介于两端MTU之间大小的ping报文,为什么能够ping通?

答:HDLC协议不会协商两端接口的MTU值,按照这个原理,发送大于较小MTU值的报文应该不能通过。但是,缺省情况下,华为路由器上发送的ping报文是允许分片的。路由器会根据接口的MTU值进行分片,因此,即使ping报文的长度大于某一端的MTU值,仍然可能ping通。在一般情况下,为了保证所有的转发业务正常,互连的端口MTU值要配置成一致。

问:传输设备的倒换会对POS接口产生什么影响?

答:当POS接口通过传输设备与对端互连时,如果传输设备进行主备倒换,可能会引起POS接口瞬间闪断,并且收到SDH告警。如果在主用链路中断的瞬间,主用链路信号失效,POS接口检测到短暂的通道信号失效,会将接口的物理状态置为Down,同时上报相应的SDH告警。传输设备根据检测到的信号失效发起倒换,倒换完成后,业务将转到备用链路,信号恢复正常,

POS接口也会检测到正常的信号,同时将接口的物理状态恢复为Up。

问:短序列方式的MP-Group能否和长序列方式的MP-Group互通?(NE80/40)

答:可以。对于路由器,当一端配置为短序列方式,一端没有配置时,两端会进行协商,协商结果为长序列方式。报文头中的序列字(sequence number)用于表示分片报文的顺序,MP报文的报文头有长序列字和短序列字两种格式:

长序列字在报文头中占24位。

短序列字在报文头中占12位。

在实际使用中,建议将两端配置为相同的序列方式。

问:光模块的接收光功率和接收灵敏度、过载光功率有什么关系?

答:接收光功率是指光模块接收到的光的功率。接收灵敏度是光模块能够正常接收的光的功率下限。过载光功率是光模块能够正常接收的光的功率上限。只有当光模块的接收光功率不低于接收灵敏度,而且不高于过载光功率时,光模块才能够正常工作。当光模块的接收光功率低于接收灵敏度时,接口的物理状态可能会反复震荡。

问:两端的CRC校验位必须要一致吗?

答:是的。如果两端的CRC校验位不同,接口的链路层状态可能为Down。特别是与其他厂商设备对接时,两端的缺省配置可能不同,需要配置为两端一致。

问:在VT接口上配置了MPLS相关参数后,需要重启接口吗?(NE20/20E)

答:必须要重启与VT接口有绑定关系的所有串口,才能够使新的MPLS参数生效。如果只在VT接口进行MPLS相关参数配置,与VT有绑定关系的串口并没进入MPLSCP opened状态,所以MPLS业务不通。对绑定到VT的所有串口进行shutdown/undo shutdown操作,使virtual-access重新生成,VT才能进行MPLSCP协商进入opened状态,这样MPLS业务才能正常工作。

篇7:数控机床故障的分析及处理

数控机床故障的分析及处理

摘要:数控机床故障是机床在生产操作过程中常见的故障之一, 数控机床出现故障将严重影响企业的正常生产,因此,处理好数控机床故障是保障企业生产正常进行的关键。本文通过阐述数控机床常见的故障,探讨了分析数控机床故障的思路,并在此基础上,提出了排除数控机床故障的处理方法。

关键词:数控机床;故障;诊断方法

前 言

数控机床设备与普通的机床设备相比,其操作系统更为复杂。数控机床复杂的系统导致数控机床在运行过程中不可避免会发生一些故障,一旦系统的某些部分出现故障,就势必使机床停机,影响了机床的有效利用。

对于生产企业来说,当数控机床出现故障时,如何快速有效地处理好数控机床的故障,是企业生产中亟待解决的问题,因此,对于从事数控机床工作的相关从业者来说,首先要熟悉数控机床常见的故障,这样才能在故障发生时及时排除故障。

一、简述数控机床常见的故障

所谓数控机床故障,就是数控机床全部或者部分丧失了规定的功能,导致数控机床无法正常运行。下文主要介绍三种数控机床常见的故障,即数控机床的结构性故障、数控机床的动作性故障和数控机床的功能性故障。

1.数控机床的结构性故障。数控机床的结构性故障主要是指主轴电动机运行噪声大、发热量大、切削时产生振动、速度不稳定等,针对此类故障,应根据其与主轴的安装、档位、润滑、轴承和动平衡的关系,在找出具体故障点的同时做出相应的排除故障的处理。数控机床的结构性故障的表现是,其

主轴转动的速度随着一个加工中心的主轴启动而转动,当转动的速度达到指令速度时,停车也随之停下来。

2.数控机床的.动作性故障。数控机床的动作性障碍是指机床的各执行部件出现的动作障碍,出现此类障碍时,常伴有报警提示,常见的数控机床动作性障碍有刀库或刀盘不能定位或者不能被松开,刀具松不开或夹不紧,旋转工作台不转等等,因此,在处理数控机床的动作性故障时,利用动作性故障发生时的报警提示,按照数控机床维修的一般规律对数控机床进行故障处理,是排除数控机床动作性故障的有效途径。

3.数控机床的功能性故障。数控机床的功能性故障主要表现为运动方向误差大、加工精度差、机床没有任何报警显示等,因此,面对数控机床的功能性故障,在处理数控机床功能性故障时,从运动误差的特点出发,结合运动误差产生大小的程度和不合格零件的特征,有针对性地进行检查,便于快速找出导致故障的原因,此类故障常见的现象是,在对某一工件进行检查时,发现轴方向的实际尺寸跟程序编辑的实际尺寸存在偏差。

二、分析数控机床故障的思路

在数控机床的使用过程中,分析与处理数控机床的故障是使用数控机床时必不可少的工作。当数控机床故障发生时,分析与排除的难度相对也大,因此,分析数控机床故障的思路可以有效地排除数控机床故障。

1.查找故障。

查找数控机床发生故障的原因的主要途径是通过询问查找和现场查找。询问查找是指,在接到数控机床发生故障,要求采取措施排除数控机床故障时,应仔细询问故障指示情况,通过了解故障产生的背景,初步作出对故障产生原因的判断,同时应该注意,当故障发生时,不能破坏现场,根据保留下来的现场实际情况,有利于数控机床故障维修人员到达现场后,迅速准确地分析故障原因,综合多方面因素进行调查。

2.故障分析。

对故障现象进行全面了解后,接下来就根据故障情况进行分析。由于大多数数控机床是有指示的,我们可以把数控机床的故障分为三类,一是有故障自诊断报警信号的故障;二是能正常运行,但加工出产品不合格的故障;三是无故障自诊断报警信号,机床无法工作的故障。因此,作为数控机床维修人员,根据已知的故障状况分析故障类型,在充分了解故障状况和故障类型的基础上,才能确定排除故障的方法。

3.确定原因。

在故障诊断的过程中,首先应该坚持可直接检查或经过简单的拆卸即可进行检查的那些部位,然后检查需要进行大量的拆卸工作之后才能接近和检查的那些部位。通过由表及里地进行故障源查找,综合多种可能确定数控机床故障产生的原因,然后在多种原因中进行筛选和排除,最终确定本次故障的真正原因。对数控机床故障原因的判断,是对维修人员熟练掌握和运用数控机床实践能力的考验,在一定上体现了机床维修人员的专业技能。

4.排除故障。

进行故障调查与分析的关键阶段是排除故障。在数控机床的故障中,应根据数控机床故障的难易程度,有针对性地采取不同的处理故障的方法排除故障,尤其是在处理较为复杂的数控机床故障时,数控机床维修人员可以同时采取几种方法,灵活运用,综合分析故障产生的原因,逐步缩小故障范围,进而排除数控机床的故障。

三、处理数控机床常见故障的方法

一般来说,随着故障类型的不同,采取的故障诊断方法也就不同。下文将结合实际工作经验,对数控机床常见的故障,提出具体的处理故障的方法。

1.结构性故障的处理方法。

在处理数控机床结构性故障时,最主要的是处理好数控机床的传动部件关系。因此,在检查数控机床传动部件时,要调整数控机床传动部件的预紧参数。另外,数控机床的结构性障碍还表现为转动部件出现噪声,此类故障要求我们在维修机床故障时,从检查分油器和滚珠两个方面入手,具体检查分油器是否出现堵塞,滚珠是否破损。压紧轴承,保持通畅的油管和完整的滚珠,才能保障数控机床结构的安全

2.动作性故障的处理方法。

在处理数控机床动作性故障时,首先,在进行维修时,由于刀具本身的重量超出了机床自身所设定的参数值,刀具将从机械手中脱落,因此,应保证刀具的重量不会超标,与此同时,还应将损坏的机械手卡紧销及时更换。其次,由于刀具松卡弹簧上的螺母出现了松动,不能加紧刀具,要求维修人员在维修时,需使螺母的最大压力值不超过额定参数值。

3.功能性故障的处理方法。

在处理数控机床功能性故障时,对于出现的加工精度达不到要求的状况,平时就应当重视对主轴部分的保养维护,主要是由于主轴部件的原因。究其原因,可以归为两点,一是由于机床在运输以及安装的过程中受到了冲撞,导致了主轴部件的位置发生了移动;二是在安装的过程中由于精度不高,是的主轴部件松动。因此,在处理数控机床功能性故障时,应该按照数控机床出厂时的要求,对主轴部分进行调整和加固。

结语

综上所述,以上对数控机床的故障的概述,主要针对数控机床的故障,提出了一些处理数控机床故障时需要遵循的规律和方法,但是面对种类繁杂的数控机床故障,仍需要我们不断探索研讨故障发生的根源。在日常工作中,对数控故障的发生要防患于未然,做好日常的维护工作是关键。做好日常的维护工作在一定程度上也可以降低数控机床故障发生的概率,为企业生产的顺利进行提供了有效保障。

参考文献

[1]郝建军.浅谈数控机床故障的排除[J].科技创新导报.,(14).

[2]张欢.数控机床故障分析与排除[J].黑龙江科技信息.,.(05).

[3]龙超韩.数控机床故障诊断[J].化学工程与装备.,(02).

[4]徐云飞.数控机床故障检修过程探讨[J].金属加工.2011,(02).

篇8:惠来电厂脱硫历史站故障分析处理论文

惠来电厂脱硫历史站故障分析处理论文

摘要:通过INFI 90HDB历史站出现部分数据间断性的拉直线,数据无变化的情况作出分析。本文分别通过对因时间不同步,导致环路数据发出错误的时间标志例外报告点与原来的数据产生冲突,从而出现系统时间与环路时间不一致的情况,而不能正确显示这段时间的历史趋势。HDB历史站自带的OPC通讯功能模块与SIS接收模块版本不能很好的兼容,导致的历史数据存储记录的稳定性存在着隐患,数据有可能出现不定期的丢失及标签点不规范可能引起的错误进行分析。

关键词:HDB;脱硫;历史站;时钟同步

一、引言

随着人们环保意识的不断提高,电厂作为主要污染源之一,倍受各界关注。从中央到地方都出台了各种监督控制措施,环保部门对电厂偷排偷放的现象也是越查越严,处罚越来越重。电厂也在不断的改进工艺,尽量减少污染物的排放,在电厂采取各种处理的控制措施的'同时,为了检测处理效果和判断排放物是否达到国家规定的排放标准,安装有各类检测仪表,如烟气成分,粉尘浓度等。为配合环保部门检查,每个电厂都采取了相应的措施如:环保数据实时上传,加装历史站等。环保数据实时上传,因中途需中多次中转,数据可能丢失造成数据不全,只作辅助检查用。

目前,环保检查仍以到现场检查历史数据,查看历史趋势为主,故作为存放历史数据的历史站尤为重要,本文主要通过对惠来电厂脱硫历史站部分数据趋势出现拉直线,短时间数据无变化的情况进行分析处理。

二、故障概况

惠来电厂脱硫控制系统采用了是ABB公司Symphony系统,烟气分秒i仪为北京雪迪龙公司的SCS-900,烟气分析仪分析出来的数据和就地仪表的测量数据分成两路,一路送给当地环保局,另一路送给PLC,PLC经过DAS软件采集到数据后存放在分析间的上位机数据库,再送到DCS系统。到DCS系统后为了稳妥起见,配有两台历史站,一台ABB公司的PGP历史站,一台由迪生特公司开发的INFI90 HDB历史站,HDB历史站除了存放历史数据以外还承当SIS接口机的任务,负责向SIS服务器转发数据。因分析间上位机软件功能有限不能查看趋势图,PGP历史站查看的趋势有限,要看长时间的历史趋势,操作起来相对比较麻烦,故HDB历史站成了查看脱硫历史数据的主要途径,环保部门检查也以HDB服务器上的数据为主要参考对象。

4月,地方环保局检查时发现HDB历史站实时数据正常,部分数据出现间断性历史趋势的不变化,拉出一条直线,重启服务器后短时间恢复正常,一段时间后又出现同样的情况,查看就地仪表,分析仪,操作员站及PGP历史站及分析间的上位机无任是实时数据的还是历史趋势都未见异常。

经仔细查看运行日志和历史趋势记录了解到发现历史站数据采集正常,实时数据的采集与显示都没问题,部分历史数据趋势在某一时间段内突然出现数据不变化,显示为直线,时间长短不一,短的几小时,长的有几天,而且出现拉直线的时间并非所有测点都为一条直线,仅仅是一两个点不定时的间断性的拉出一条直线。故障现象如图1所示:

通过对同是在DCS环路上采集数据的操作员站检查发现没有发现任何异常情况,实时数据和历史趋势都正常。运行人员反应出现异常的这段时间内也没出现坏点或通讯中断的现象。通过检查发现由本台历史站转发到SIS的数据也正常,趋势完整,可以正常查看实时数据和历史趋势。

三、故障分析

通过查询软件日志及错误的数据文件,经分析判断,首先肯定的是数据采集正常,历史数据也都存在没有丢失,初步得出故障原因可能由以下问题引发:

(一)新增加的GPS时钟,导致时间紊乱,引起HDB趋势出错对过对日志文件查询,可以看到出现这种情况有十一天。据反映为让脱硫DCS时间与主机DCS时间及SIS和环保部门时间同步,十一天前新装了一套GPS时钟。加装GPS时钟后DCS时间和操作员站时间都已经自动同步。HDB历史站因为不是ABB公司开发,软件的兼容性方面存在一定的欠缺,导致时间没有自动同步上。初步怀疑,历史趋势不正常原因是增加脱硫DCS GPS时钟同步装置引起的。调试过程中,没能及时使历史站时钟与DCS时钟同步,导致环路数据发出错误的时间标志例外报告点与原来的数据产生冲突,从而出现系统因环路时间不一致而不能正确显示这段时间的历史趋势。因为实时数据一直显示正常,且转发到SIS的数据都没问题,所以在环保部门检查前,一直没有发现部分历史趋势显示不正常的问题。

(二)OPC通讯模块板本较老

由于该历史站不仅存放历史数据,还承担看向SIS系统转发脱硫数据的功能,在检查中发现随历史站带的OPC通讯模块功能为较老版本与SIS接收模块版本不一致,历史数据存储记录的稳定性存在着隐患,数据有可能不定期的丢失,而据其它单位使用的新版本OPC用户反应,未发现该项功能异常。

(三)部分OPC标签命名不规范,导致ICI卡件熏启

OPC取数要严格按照HDB的命名规则,检查发现数字量和模拟量都没有问题,主要是站类型存在此问题,命名不规范,同计算机一样,也可能造成ia接口卡件故障重启,某些点无法访问等故障,出现数据丢失的情况。

四、处理措施

钟对出现的问题和分析做出相应的处理措施:

(一)加装第三方软件同步脱硫HDB历史站与DCS及其它电脑的时间,让HDB历史站自动跟踪DCS上GPS时钟,设定每半小时校准一次,并请运行人员留意时间是否一致。

(二)针对可能存在的标签的例外报告记录正常,大比例标度时偶尔不能画出趋势曲线的问题,通过联系迪生特对软件版本进行升级解决。在升级过程中又发现,软件升级后与老板本OPC通讯模块功能存在着冲突,如果不升及的话可能导致SIS采级数据丢失的情况,又对OPC通讯功能模块进行升级处理。

(三)因为HDB应用在SIS接口时,SIS画面是从PGP的画面转化而成的,画面上的标签点都是使用PGP原有的后缀(原子),HDB站类型的后缀(原子)和PGP上是不一样的,只有按照HDB的要求进行修改SIS才能取到数并且不会影响HDB才能正常运行,主要修改了以下类型:

五、结论

通过对HDB历史站时间进行设置,目箭HDB历史站时间已与DCS环路时间及其它计算机时间已正常同步;通过对OPC版本的升级与SIS采集端口冲突的问题也得到解决。对OPC标签命名的规范化,导致辞ia接口故障重启的现象也消失了,经过对以上问题的处理,历史趋势不能正常显示的问题也消失,之前显示为直线的历史趋势也显示正常。

篇9:计算机网络通讯技术故障分析与处理论文

计算机网络目前在我国迅速发展,但网络通信技术仍存在着很多技术故障,而定期进行检查维护、改善硬件环境、加强计算机管理都是针对计算机网络通讯技术故障的有效处理措施。本文探讨了如何分析和处理计算机网络通讯技术故障,保障计算机网络通讯的安全平稳运行。

计算机网络已经和我们的生活还有工作密切相关,网络技术的不断发展和计算机应用越来越多,使用过程中也必定会出现许多技术故障问题,我们应及时发现问题,分析出处理措施,保证计算机的正常运行,也保障了人们的生活质量。

1 网络通讯中的技术故障

计算机网络通讯技术可以分为通讯技术和计算机技术两大部分, 通讯技术能够实现影音、文字、声音的迅速传播,并提高单机的数据库容量,使数据运算的速度得到提升,提高信息输出和整理的效率。同时计算机网络通讯技术还能够连接企业局域网,实现资源共享。当前应用比较普遍的网络通讯技术有计算机运输线路、计算机操作系统、计算机通讯装置等。

1.1 硬件故障

1.1.1 端口问题

计算机网络运用中端口问题是最常出现的问题。应用在计算机中的端口有双绞线端口、光纤端口等,在拔插端口时,应当仔细认真,保持端口和插头干净,如若插头和端头有灰尘,可能就会出现通信故障。

在日常生活中,人们拔插接头都是在通电的情况下,虽然理论上可以这么做,但会使端口问题的发生率增加。接头在运输过程中遭到损坏、购买时尺寸不对等都会使端口性能出现问题。处于室外环境的双绞线端口若受到暴风雨、雷电等自然因素影响,会使端口不能正常工作。

1.1.2 计算机硬件受损网络通讯出现故障的主要原因有电线损坏、电压不稳、自然灾害等

电源供电是该类问题的重点。应当运用独立的`电源来保障电源的合格使用,安装电压稳定器来稳定电压,保证计算机正常工作,在经济条件允许下购置一些稳定器来保证交换机的电压稳定,并且安装避雷设备在电压较多和重要的区域中。

1.1.3 交换机背板、线缆问题

计算机中每个模块的连接点是交换机背板,所有当电路在潮湿的环境下回出现漏电或短路的现象。若电路板处于高温或雷击的环境中,会使元器件受到损坏,交换机的电缆出现问题而使计算机不能正常工作。背板中硬件类别的故障问题还有接头松动、连接线缆时误用电线错误、线路连接错误、线缆排列顺序错误等,都会导致光缆连接错误和网络故障。

1.2 软件故障

计算机网络通讯过程中,病毒会干扰计算机的正常运行,使线路中断,这是目前这个网络时代中最常见的软件故障问题。目前计算机型号多样,交换器配置等器件也都随计算机变化而变化,许多操作人员因不熟悉交换机的系统,配置的设备与计算机不匹配,导致影响了网络正常通讯。

如果计算机的主机安全性能出现了问题,网络IP地址也会出现混乱,导致网络通讯线路的中断。网线出现故障和网络速度较慢跟网卡有很大的关系。

1.3 安全故障

环境温度的过高和不可抗拒的自然因素导致用户密码被破译或丢失,影响网络正常通讯。目前计算机网络发展已经迅速蔓延到全世界,有些不法分子投机取巧盗取信息资料,进行各种不法行为,蓄意破坏网络安全系统。还有一些不法分子编制隐蔽、具有破坏力的病毒来破坏用户计算机网络通讯。

篇10:计算机网络通讯技术故障分析与处理论文

2.1 进行日常维护

系统维护人员需要定期给计算机做个检查,检查的部分分别有电脑显示器、路由器、网线、显卡和交换机等。不仅要检查这些硬件设备是否正常运行,还要对它们进行保养。例如不定期对键盘进行清洁,避免产生灰尘,延长使用寿命;定期清扫主板,更换但热气的导热硅脂;给散热风扇加机油,清扫积攒的灰尘等。系统维护人员还要检查计算机的网络通讯安全,查看系统是否为加密状态,避免让不法分子有机可趁。

严格执行国家的网络安全规定。计算机的防水防火工作也是维护的重点,网线和网卡的故障问题可以采用网卡指示灯来判断,或利用集线器指示灯,这样就可以将多个问题分别显示出来,便于开展后续的修理工作,同时改善了计算机的硬件环境,保证计算机网络通讯安全正常的使用。

2.2 强化软件维护

连接好网线,针对计算机属性安装一些实用的软件来随时监控计算机的状态,并正确安装IP、TCP协议。检测集成器,查看是否有病毒,然后利用软件下载安装补丁来查杀病毒,及时修补系统的漏洞。还有一些使用过程中产生的垃圾也要定时删除,来保证不占计算机内存,拖慢网络速度。也要注意网络的安全,跟随系统最新版本来升级防火墙。如果计算机中有非常重要的文件,要做好安全和保密工作以防文件被盗或丢失。

3 建立计算机管理体系

计算机的管理需要一个专门的部门,并对部门中的管理人员进行统一培训,提高管理人员的积极性,让管理人员对自己的工作有责任感。同时也要提高管理人员的技术水平,能正确处理计算机网络通讯出现的问题和故障。管理人员还需要对计算机资源进行汇总登记备案,完善设备记录,并对每台计算机的硬件资源、维修次数、升级等情况进行记录。计算机设备的随机资料和保修单都交由部门保管。

4 结语

计算机已经完全的普及到人们的日常生活中,给人们带来了便利。一旦计算机网络出现了问题会影响到人们的正常生活,所以系统维护人员需要制定周密的检查计划定期检查维修,及时消除安全隐患,推动计算机网络通讯技术目前的发展。

篇11:内燃机车自然缓解故障的分析和处理论文

内燃机车自然缓解故障的分析和处理论文

摘要:

文中对内燃机车自然缓解故障发生的原因进行了分析。通过对正常状态的认识和故障状态的对比,阐明了故障发生的具体部位,同时对该类故障的处理方法和预防措施提出了建议。

关键词:

空气制动机;故障;自然缓解;运行安全;内燃机车

内燃机车上采用的JZ-7型空气制动机,它具有操作灵活,使用方便等诸多优点,给乘务人员带来许多方便。但是,当自阀手柄在制动位,单阀手柄在运转位(即制动后保压状态)时,机车自然缓解现象时有发生。尤其是调车机车在坡道停车,出现该故障时机车自然缓解移动,严重危机行车和人身安全。

一、JZ -7型空气制动机在制动保压时的正常状态

单阀在运转位,自阀在最小减压位、最大减压位、过量减压位、手柄取出位,JZ-7分配阀呈制动后保压位,机车呈制动后保压状态。

根据JZ-7型空气制动机分配阀的结构及各位置通路可知,其膜板鞲鞴的动作是靠列车管和降压风缸之间的压差支配。副阀膜板右侧为降压风缸的压力空气,左侧为列车管的压力空气。当列车管进行减压后,膜板鞲鞴在降压风缸压力空气推动下向左移动到制动位。此时,降压风缸管经柱塞中心孔与保持阀沟通,降压风缸的压力空气经保持阀排入大气。待降压风缸的压力降到使膜板两侧压力平衡时,膜板在弹簧力的作用下略向右移,使柱塞处于保压位置,切断了降压风缸管与保持阀的通路。膜板鞲鞴两侧压力相等(即左侧列车管压力加上缓解弹簧力等于右侧降压风缸压力),使机车处于制动后的保压状态。

二、故障问题分析

在正常状态下机车处于制动后的.保压状态不会缓解,机车不会溜走。可实际上,机车出现此类故障时不但会缓解,而且缓解速度进行较快。根据分配阀的副阀部的工作原理,分析其中的主要原因,若分配阀膜板鞲鞴此时出现裂缝,那么,降压风缸的压力空气就会从裂缝处流向膜板鞲鞴左侧(因降压风缸的空气压力稍高于左侧的列车管空气压力),使膜板两侧压力失去平衡,膜板在缓解弹簧力的作用下向右移动,使副阀柱塞尾部凹槽和柱塞尾端连通,使工作风缸的压力空气很快流向降压风缸。由于工作风缸的空气压力迅速下降,破坏了分配阀主阀大小膜板上下的压力平衡,促使大膜板鞲鞴下移,带动主阀空心阀杆下移,并使其脱离供气阀,开放排气口,使作用风缸的压力空气经常通过限压阀、紧急限压阀、主阀空心阀杆排气口排向大气。

由于作用风缸压力空气排向大气,故作用阀的作用鞲鞴连同空心阀杆受其缓解弹簧的作用而处于下极端的位置,空心阀杆离开供气阀,打开排气口,使制动缸的压力空气经空心阀杆排至大气,从而缓解了机车的空气制动。

经以上分析可知,机车的自然缓解,除副阀膜板鞲鞴有裂纹、泄露外,降压风缸管系泄露、副阀套靠柱塞中心孔处裂纹、工作风缸及其管系泄露等,均能引起机车自然缓解。但副阀膜板鞲鞴裂漏自然缓解来得快,这也是不易发现和判断之所在。

三、故障的处理方法

经多年维修实践和对该故障的总结,当机车发生此类故障时,处理情况如下:

1、机车出库前就发现有自然缓解现象,应立即停机进行故障点的查找和处理。

2、机车运行过程中发现有自然缓解故障时:

(1)立即停车摘钩,单机使用单阀操纵。

(2)当机车运行作业途中调速或停车,使用自阀制动时,应用单阀配合,以防机车自然缓解,引起冲撞或断钩。待机车回库后做修理。

四、该类故障的防护措施

1、要求检维修人员要严格按照内燃机车检修、保养规程的内容和工艺作业,提高检维修质量。尤其要加强对副阀膜板及其各管系、阀套的检修和检查。

2、检修更换膜板时,使用有质量保证的厂家生产的膜板。

3、要求司机按照操作规程使用制动机,尽量避免使用紧急制动或一次性大减压,以防止膜板鞲鞴急剧动作而造成损坏。

篇12:电动机故障分析论文

一、电动机的选择

1.根据电动机安装地.点的周围环境来选择电动机的形式

农村用电动机的常见形式有防护式和封闭式两种。防护式的通风性能较好,价格低,适合环境干燥,灰尘少的地方采用;如果灰尘较多,水滴飞溅的地方,应采用封闭式电动机。如农副产品加工机械及水泵中可采用这种电动机,另外,还有一种密封式电动机,可以浸汲在水里工作,电动潜水泵就采用这种电动机。

2.根据使用负荷情况,选择电动机的功率

电动机的功率一般应为生产机械功率的1.1~1.5倍。如果功率选择过大,不仅增加投资,同时也降低了机械效率,增加生产成本。如果功率选择过小,电动机长期承受过大负荷,会使温度上升过高而损坏绝缘,缩短电动机使用寿命。

3.根据工作机械的转速要求以及传动方式选择电动机转速配套原则是使电动机和生产机械都在额定转速下运行,传动方式两者相同。

二、电动机常见故障分析

1.起动故障

当电器接通电源后,电动机不工作,并且电动机无任何声响。分析其主要原因一是与电动机相配套的起动电器,若电扇、排风扇、洗衣机等电机均采用电容器起动运转,而电冰箱、冷柜起动机构采用电阻分相起动运转,所以一旦起动电路中的.电容器和分相电阻损坏击毁,导致电动机无法正常运转工作,检测时应先排除起动电容或电阻故障后,才查电机故障。

另一种情况是电动机内部绕组短路,局部绕组烧毁,导致电动机停止工作。当一旦怀疑电动机自身故障时,最简单的检测用万用表电阻档测各绕组阻值便知。

首先将电动机的三根引出线ABC用万用表区分判断,这里以双桶洗衣机电动机为例,当测量AB线之间的电阻值在95欧姆,BC间阻值在130欧姆,AB间阻值在12欧姆时,那么很容易确定C为中线性,AC为运行绕组,BC为起动绕组。以上均为电动机绕组的正常电阻值,在发生短路后,其电阻值均小于以上正常值,电动机绕组存在各类问题。又如电冰箱电动机一般起动绕组无短路,电阻值约在23欧姆,运行绕组无短路,电阻值在10欧姆间,起动和运行串接绕组正常阻值在35欧姆。

2.运行中的故障分析

电动机在运行中由于种种原因,会出现故障,故障分机械与电气两方面。

2.1机械故障

机械方面有扫膛、振动、轴承过热、损坏等故障。异步电动机定、转子之间气隙很小,容易导致定、转子之间相碰。一般由于端盖轴室内孔磨损或端盖止口与机座止口磨损变形,使机座、端盖、转子三者不同轴引起扫膛。

振动应先区分是电动机本身引起的,还是传动装置不良所造成的,或者是机械负载端传递过来的,而后针对具体情况进行排除。属于电动机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良,转轴弯曲,或端盖、机座、转子不同轴,或者电动机安装地基不平,安装不到位,紧固件松动造成的。振动会产生噪声,还会产生额外负荷。

电动机在通电后发现转速无力很慢时,分析其原因有多方面,电容起动式电动机是否电容器容量不足漏电严重,电源电压过低,或者是鼠笼转子铝条部分有严重事故缩孔、断条等情况,特别是洗衣机电动机经常起动和正反交替运转,使转了铝条的感应电流大而使电磁力增大,均会产生转了铝条断裂,从而导致运转慢无力问题,严重时使转子发热和产生电火花而烧坏定了绕组线包。

2.2电气故障

电气方面故障有定子绕组缺相运行,定子绕组首尾反接,三相电流不平衡,绕组短路和接地,绕组过热和转子断条、断路等。

缺相运行是常见故障之一。三相电源中只要有一相断路就会造成电动机缺相运行。缺相运行可能由于线路熔断器熔体熔断,开关触点或导线接头接触不良等原因造成。

三相电动机缺一相电源后,如在停止状态,由于合成转矩为零而堵转(无法起动)。电动机的堵转电流比正常工作的电流大得多。因此,在此情况下接通电源时间过长或多次频繁地接通电源起动将导致电动机烧毁。运行中的电动机缺一相时,如负载转矩很小,仍可维持运转,仅转速略有下降,并发出异常响声;负载重时,运行时间过长,将会使电动机绕组烧毁。

三相绕组首尾错接时,接通电源后会出现三相电流严重的不平衡、转速下降、温升剧增、振动加剧、声音急变等现象。如保护装置不动作,很容易烧坏电动机绕组,所以必须辨清电动机出线端首、尾后,方可通电运转。

三相电流不平衡的故障,常常由于电动机外部电源电压不平衡所引起,其内部原因主要是绕组匝间短路或在电动机重绕修理时线圈匝数错误或接线错误。

绕组接地和短路都会造成电流过大。接地故障可用兆欧表检查。短路故障可在降低定子绕组电源电压情况下,通过测量电流来判断,也可以测量其直流电阻来判断。

分析电动机过热温升的原因,主要有这样几种情况,电动机自身内在质量问题,电动机长期处于超负荷工作运行状态(械传动机机构故障引起电动机负荷大),电动机散热性能很差,电动机绕组局部短路烧毁等一系列情况。

电动机温升异常最大的故障原因是绕阻匝间短路,匝间短路是由于绕组漆包线绝缘层性能差而损坏;,从而使相间导线直接碰及,形成了一个低阻抗的电流回路,使匝间电流增大而使线包发热,久之使用使整个定子绕组产生过热,最终因热量剧升而击毁绕组,所以此类故障应拆开机壳,查绕组故障点。如果线包无烧毁问题,可将定子浸入专用绝缘漆内重新进行浸漆绝缘处理,然后在烘箱内烘烤干燥。若线包有局部烧毁现象,而短路点又在定子槽内,那只有更换整个绕组线包。

笼型电动机转子铸铝导体断条或绕线式电动机转子绕组断路时,会造成定子电流不正常,出现时高时低周期性变化,还出现忽大忽小的噪声和振动。负载越重时,这种现象越显著。

三、电动机的维护

1.使用环境应经常保持干燥,电动机表面应保持清洁,进风口不应受尘、纤维等阻碍。

2.当电动机的热保护连续发生动作时,应查明故障来自电动机还是超负荷或保护装置整定值太低,消除故障后,方可投入运行。

3.应保证电动机在运行过程中良好的润滑,一般的电动机运行5000h左右,即应补充或更换滑脂(封闭轴承在使用寿命期内不必更换润滑脂),运行中发现轴承过热或润滑变质时,应及时换润滑油。更换润滑脂时,应消除旧的润滑脂,并用汽油洗净轴承及轴承盖的油槽,然后将ZL—3锂基润滑脂填充轴承内外圈之间空腔的1/2(对2极)及2/3(对4.6.8极)。

4.当轴承的寿命终了时,电动机运行时的振动及噪声将明显增大,检查轴承的径向游隙一定数值时,即更换轴承。

5.拆卸电动机时,从轴伸端或非轴伸端取出转子都可以,如果没有必要卸下风扇,还是从非轴承伸端取出转子较为便利,从定子中轴出转子时,应防止损坏定子绕组或绝缘。

6.更换绕组时必须记下原绕组的形式,尺寸及匝数、线规等,当失落了这些数据时,应向制造厂索取,随意更改原设计绕组,常常使电动机某项或几项性能恶化,甚至无法使用。

参考文献:

[1]农业机械化与现代化第四期

[2]山东农机化使用维护第五期

[3]电动机使用与故障分析20第三期

篇13:POWER气化炉故障分析及处理程序

POWER气化炉故障分析及处理程序

摘 要:本文以美国产POWER防爆型立式电热气化器(XP50)在使用过程中发生的`电气故障为例,进行技术分折,系统地提出各类故障的检查方法和处理步骤。

1 前言

气化炉是将液化石油气从液态快速气化的设备。它的安全技术要求严格,一般有多种安全保障装置。在使用中遇到复杂多样的故障,尤其是电气故障,维修时要特别注意人身和设备安全。应有严格的技术措施和操作程序,以确保维修工作安全、可靠和快捷,避免意外事故发生。

2 气化器设备电控系统、保护系统组成及工作特性参数

XP―50型气化炉结构如图1所示。

2.1 控制及保护装置组成

RTD温控稳态系统

LPG液位浮于开关系统

电源稳压系统

系统超高压保护装置

经济运行操控系统

自动/再启动系统

XR遥控报警系统

2.2 工作特性

气化量: 50KG/HR

工作温度: 82-88℃

极限温度: 90℃

启动温度: 40 ℃

热交换面积: 0.33锖

筒体耐压: 1.8 MPa/cm

2.3 电热特性

电源:380V,9.9Amps(线电流),3相,6.5KW

电屏蔽等级:NEMA3级(美国电气制造商协会)

电路图见图2。

2.4 工作过程要点

RTD温度传感器及稳态控制系统将维持炉内温度在82-88℃,液态LPG进入炉内,从加热棒上获取能量,当棒冷却时,RTD提供电信号给接触器,通电加热,电源不稳定时,控制板可自动断电。

3 容易发生电气故障分析及检查步骤和处理程序

根据设备使用中常遇故障,按故障部位、现象和关联层次关系进行分析。

3.1 故障分类

(1)系统不启动

(2)系统无任何反应

(3)系统开启,但不持续

(4)液相电磁阀关闭

(5)系统间歇性关闭

3.2 故障状况分析及处理程序

3.3 检测处理操作要领

(1)为防爆防燃烧,如必须开炉盖,应先断电,仔细消除LPG气雾,渗漏及任何残存LPG,炉旁配备灭火器。

(2)即使关机,壳体仍有可能存在高电压,只有切断电源,才可安全进行炉体内检查维修。

(3)测试交流电压VAC时,先测试线间电压,禁止从线与地间VAC开始。

(4)禁止从零地线到电源来测电流,因易造成错误读数,应反之。

(5)拨式开关须拨至箭头反方向后调试,且所有接头须从辅助插销拨出。

(6)进行满负荷电压和满负荷电流测试,误差应小于+3%。注意低电压会造成电流差别太大,导致加热器失效,接线损坏,保险丝熔断,若发生,则与厂商联系。

(7)测试液位浮子开关时,应打开控制壳体,断开控制板前部主要连接器。

(8)液位开关的更换,必须先断电源,关闭LPG入口截止阀,更换前打开出日阀,卸去气化器压力,之后再开盖拽出各种接线,拆开各电路元件。

(9)拆电磁阔前,应关闭出口阀,开入口阀,开机加热直至88℃,加热器停止加热,将LPG压回贮罐,再关机切断电源,关入口阀,开出口阀卸去炉压后,再关入口阀。压力若仍升高,表明阀漏需修理或更换。

(10)RTD是 l―2,3―4插头,拨出控制板上RTD插头,测试RTD阻值应随温度变化(参见RTDT―R图,核对响应参数)。

(11)在经常停电或电力反常时,经济运行系统中自动再启动装置会在电力正常后自动启动。如因安全因素,高温或液位太高一造成关机,气化炉不会自动启动,只能手动开机。

(12)经济运行系统由压力开关控制,应检查压力开关看气化炉启动压是否小于0.35MPa。(厂家将压力开关设定于0.35MPa,当炉启动压大于 0.49MPa则停机,小于0.35MPa则启动)

(13)XP遥控器可远距离控制气化炉,同时显示气化炉工作状况,又起警报作用,有NMA4X特性,当液位或温度超过极限,信号灯亮,鸣响,可明确告知故障系统。

本文对丹麦、日本、德国等进口气化炉和国产及台湾地区气化炉的检修,亦有参考价值。

内燃机车自然缓解故障的分析和处理论文

西门子直线加速器电源模块故障分析论文

有线电视光信号故障处理论文

电信技术设备接地技术的研究论文

地铁屏蔽门电源系统方案比较

广州地铁砂土层液化判别论文

无线发射具体设计的广播电视论文

变电站安全运行监控系统设计研究论文

变频器特点及其应用论文

变电站智能设备分析的论文

屏蔽泵故障分析及处理论文
《屏蔽泵故障分析及处理论文.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【屏蔽泵故障分析及处理论文(精选13篇)】相关文章:

优秀的变电所微机装置防雷分析论文2022-09-09

电子通信系统关键技术问题分析论文2024-02-19

废旧电子电气设备无害化技术分析论文2023-08-28

危险废物监控系统设计论文2022-05-06

有线电视定期维护与故障维修论文2023-12-05

试论有线电视网络系统防雷接地论文2023-08-04

低压真空断路器的论文2023-01-06

播出与传播有线电视论文2023-04-14

电信技术工程中设备抗干扰接地策略研究论文2022-05-04

农村有线电视建设的调查分析论文2022-07-27