细长轴数控车削方法

时间:2022-07-28 05:29:46 其他范文 收藏本文 下载本文

细长轴数控车削方法(共9篇)由网友“walnut”投稿提供,以下是小编收集整理的细长轴数控车削方法,仅供参考,欢迎大家阅读。

细长轴数控车削方法

篇1:细长轴数控车削方法

细长轴数控车削方法

在数控加工中,车细长轴工件是一种难度较大的加工工艺。

但该工作也有一定的规律性,存在三个关键技术,即中心架和跟刀架的使用、解决工件热变形伸长以及如何合理选择车刀几何形状等方面,下面以一个实际工件为长800mm直径40mm的细长轴,在中心架和跟刀架的辅助的前提下,来对细长轴进行合理的阐述加工。

一、零件图的分析

该工件表面由内外椭圆面、内孔及内外螺纹等表面组成,其中多个直径尺寸与轴向尺寸有较高的尺寸精度和表面粗糙度要求。

零件图尺寸标柱完整,符合数控加工尺寸标柱要求;轮廓描述清楚完整;零件材料为45钢,切削加工性能较好,无热处理和硬度要求。

1、结构工艺性分析

零件的公艺性是指零件对加工方法的适应性,即所设计的零件结构便于加工成型。

在数控车床上加工零件时,应该根据数控车削的特点,认真审视零件结构的合理性。

本次研究课题就应该使用多把车刀,以及其它辅助装置来完成零件的车削加工。

2、尺寸标注方法分析

零件图上尺寸标注方法应适应车床加工的特点。

本零件图的尺寸标注能够直观的分析出各部分的尺寸,尺寸标注没有不合理的部分。

3、精度及技术要求分析

对被加工零件的精度及技术要求进行分析,是零件工艺分析的重要内容,只有在分析零件尺寸精度和表面粗糙度的基础上,才能正确合理地选择加工方法、装夹方式、刀具及切削用量等。

精度及技术要求分析的主要内容如下:

(1)分析精度及各项技术要求是否齐全、是否合理。

(2)分析本工序的数控车削加工精度能否达到图样要求,若答不到,需要采取其它措施弥补时,则应给后续工序留有余量。

(3)找出图样上有位置精度要求的表面,这些表面应在一次安装下完成。

(4)对表面粗糙度要求较高的表面,应确定用恒线速度切削。

4、轮廓几何要素分析

在分析零件图时,要分析几何要素的给定条件是否充分。

本零件图几何要素充分,圆弧与圆弧相切,内外螺纹紧密配合,总长度等于各段长度,符合轮廓几何要素要求。

二、车削过程要注意的问题:

1、工件受切削力、自重和旋转时离心力的作用,会产生弯曲、振动,严重影响其圆柱度和表面粗糙度。

2、在切削过程中,工件受热伸长产生弯曲变形,;车削就很难进行,严重时会使工件在支持尖间卡住。

因此,车细长轴是一种难度较大的加工工艺。

虽然车细长轴的难度较大,但它也有一定的规律性,主要抓住中心架和跟刀架的使用、解决工件热变形伸长以及合理选择车刀几何形状等三个关键技术,问题就迎刃而解了。

三、中心架支撑细轴使用过程:

在车削细长轴时,可使用中心架来增加工件刚性。

一般车削细长轴使用中心架的方法有:1、中心架直接支承在工件中间 当工件可以分段车削时,中心架支承在工件中间,这样支承,L/d值减少了一半,细长轴车削时的刚性可增加好几倍。

在工件装上中心架之前,必须在毛坯中部车出一段支承中心架支承爪的沟槽,表面粗糙度及圆柱度误差要小,否则会影响工件的精度。

车削时,中心架的支承爪与工件接触处应经常加润滑油。

为了使支承爪与工件保持良好的接触,也可以在中心架支承爪与工件之间加一层砂布或研磨剂,进行研磨抱合。

2、用过渡套筒支承车细长轴用上述方法车削支承承中心架的沟槽是比较困难的。

为了解决这个问题,可加用过渡套筒的处表面接触,过渡套筒的'两端各装有四个螺钉,用这些螺钉夹住毛坯工件,并调整套筒外圆的轴线与主轴旋转轴线相重合,即可车削。

四、使用跟刀架支撑细长轴的方法:

跟刀架固定在床鞍上,一般有两个支承爪,跟刀架可以跟随车刀移动,抵消径向切削时可以增加工件的刚度,减少变形。

从而提高细长轴的形状精度和减小表面粗糙度。

从跟刀架的设计原理来看,只需两只支承爪就可以了,因车刀给工件的切削抗力F`r,使工件贴住在跟刀架的两个支承爪上。

但是实际使用时,工件本身有一个向下重力,以及工件不可避免的弯曲,因此,当车削时,工件往往因离心力瞬时离开支承爪、接触支承爪而产生振动。

如果采用三只支承爪的跟刀架支承工件一面由车刀抵住,使工件上下、左右都不能移动,车削时稳定,不易产生振动。

因此车细找轴时一个非常关键的问题是要应用三个爪跟刀架。

五、车削细长轴的车刀的选择:

1、刀片材料为YT15硬质合金。

2、切削用量:粗车时,切削速度vc=50~60m/min;进给量f=0..3~0.4mm/r;切削深度ap=1.5~2mm。

精车时,切削速度vc=60~100m/min;进给量 f=0.08~0.12mm/r ;切削深度ap=0.5~1mm.。

3、采用乳化液作切削液。

4、适用范围:适用于车削光杠、丝杆等细长轴。

六、合理选择车刀的几何形状:

车削细长轴时,由于工件刚性差,车刀的几何形状对工件的振动有明显的影响。

选择时主要考虑以下几点:

1、由于细长轴刚生差,为减少细长轴弯曲,要求径向切削力越小越好,而刀具的主偏角是影响径向切削力的主要因素,在不影响刀具强度情况下,应尽量增大车刀主偏角。

车刀的主偏角取kr=80°~93°。

2、为减少切削烟力和切削热,应该选择较大的前角,取r0=15°~30°。

3、车刀前面应该磨有R11.5~3的断屑槽,使切削顺利卷曲折断。

4、选择正刃倾角,取入=3°使切削屑流向待加工表面,并使卷屑效果良好。

5、切削刃表面粗糙度要求在Ra0.4以下,并要经常保持锋利。

6、为了减少径向切削力,应选择较小的刀尖圆弧半径(re<0.3mm)。

倒棱的宽度也应选得较小,取倒棱宽br1=0.5f。

篇2:谈谈车削细长轴加工方法论文

谈谈车削细长轴加工方法论文

摘 要:细长轴的车削加工历来是比较困难的。本文根据我多年的工作经验,针对学生在实习操作中车削细长轴的特殊情况,提出了自己的见解和方法。

关键词:细长轴 车削工艺 变形 加工质量 预防措施

所谓细长轴就是工件的长度与直径之比大于25(即L/D>25)的轴类零件称为细长轴。在切削力、重力和顶尖顶紧力的作用下,横置的细长轴是很容易弯曲甚至失稳,提高细长轴的加工精度问题,就是控制工艺系统的受力及受热变形的问题。因此,采用反向进给车削,配合以最佳的刀具几何参数、切削用量、拉紧装置和轴套式跟刀架等一系列有效措施。以提高细长轴的刚性,得到良好的几何精度和理想的表面粗糙度,保证加工要求。

根据我多年来在车工生产实习教学实践经验谈一谈细长轴的车削。请同行多多指教。

一、细长轴在加工中是最常见的问题

1、热变形大。

细长轴车削时热扩散性差、线膨胀大,当工件两端顶紧时易产生弯曲。

2、刚性差。

车削时工件受到切削力、细长的工件由于自重下垂、高速旋转时受到离心力等都极易使其产生弯曲变形。

3、表面质量难以保证。

由于工件自重、变形、振动影响工件圆柱度和表面粗糙度。

二、怎样提高细长轴加工精度及预防措施

1、选择合适的装夹方法

(1)双顶尖法装夹法。采用双顶尖装夹,工件定位准确,容易保证同轴度。但用该方法装夹细长轴,其刚性较差,细长轴弯曲变形较大,而且容易产生振动.因此只适宜于长径比不大、加工余量较小、同轴度要求较高、多台阶轴类零件的加工。

(2)一夹一顶的装夹法。采用一夹一顶的装夹方式。在该装夹方式中,如果顶尖顶得太紧,除了可能将细长轴顶弯外,还能阻碍车削时细长轴的'受热伸长,导致细长轴受到轴向挤压而产生弯曲变形。另外卡爪夹紧面与顶尖孔可能不同轴,装夹后会产生过定位,也能导致细长轴产生弯曲变形.因此采用一夹一顶装夹方式时,顶尖应采用弹性活顶尖,使细长轴受热后可以自由伸长,减少其受热弯曲变形;同时可在卡爪与细长轴之间垫入一个开口钢丝圈,以减少卡爪与细长轴的轴向接触长度,消除安装时的过定位,减少弯曲变形。

(3)双刀切削法。采用双刀车削细长轴改装车床中溜板,增加后刀架,采用前后两把车刀同时进行车削。两把车刀,径向相对,前车刀正装,后车刀反装。两把车刀车削时产生的径向切削力相互抵消。工件受力变形和振动小,加工精度高,适用于批量生产。

(4)采用跟刀架和中心架。采用一夹一顶的装夹方式车削细长轴,为了减少径向切削力对细长轴弯曲变形的影响,传统上采用跟刀架和中心架,相当于在细长轴上增加了一个支撑,增加了细长轴的刚度,可有效地减少径向切削力对细长轴的影响。

(5)采用反向切削法车削细长轴。反向切削法是指在细长轴的车削过程中,车刀由主轴卡盘开始向尾架方向进给.这样在加工过程中产生的轴向切削力使细长轴受拉,消除了轴向切削力引起的弯曲变形。同时,采用弹性的尾架顶尖,可以有效地补偿刀具至尾架一段的工件的受压变形和热伸长量,避免工件的压弯变形。

2、选择合理的刀具角度

为了减小车削细长轴产生的弯曲变形,要求车削时产生的切削力越小越好,而在刀具的几何角度中,前角、主偏角和刃倾角对切削力的影响最大。细长轴车刀必须保证如下要求:切削力小,减少径向分力,切削温度低,刀刃锋利,排屑流畅,刀具寿命长。从车削钢料时得知:当前角γ0增加10°,径向分力Fr可以减少30%;主偏角Kr增大10°,径向分力Fr可以减少10%以上;刃倾角λs取负值时,径向分力Fr也有所减少。

(1)前角(γ0)其大小直接着影响切削力、切削温度和切削功率,增大前角。可以使被切削金属层的塑性变形程度减小,切削力明显减小。增大前角可以降低切削力,所以在细长轴车削中,在保证车刀有足够强度前提下,尽量使刀具的前角增大,前角一般取γ0=150。车刀前刀面应磨有断屑槽,屑槽宽B=3.5~4mm,配磨br1=0.1~0.15mm,γ01=-25°的负倒棱,使径向分力减少,出屑流畅,卷屑性能好,切削温度低,因此能减轻和防止细长轴弯曲变形和振动。

(2)主偏角(kr)车刀主偏角Kr是影响径向力的主要因素,其大小影响着3个切削分力的大小和比例关系。随着主偏角的增大,径向切削力明显减小,在不影响刀具强度的情况下应尽量增大主偏角。主偏角Kr=90°(装刀时装成85°~88°),配磨副偏角Kr’=8°~100。刀尖圆弧半径γS=0.15~0.2mm,有利于减少径向分力。

(3)刃倾角(λs)倾角影响着车削过程中切屑的流向、刀尖的强度及3个切削分力的比例关系。随着刃倾角的增大,径向切削力明显减小,但轴向切削力和切向切削力却有所增大。刃倾角在-10°~+10°范围内,3个切削分力的比例关系比较合理。在车削细长轴时,常采用正刃倾角+3°~+10°,以使切屑流向待加工表面。

(4)后角较小a0=a01=4°~60,起防振作用。

3、合理地控制切削用量

切削用量选择的是否合理,对切削过程中产生的切削力的大小、切削热的多少是不同的。因此对车削细长轴时引起的变形也是不同的。粗车和半粗车细长轴切削用量的选择原则是:尽可能减少径向切削分力,减少切削热。车削细长轴时,一般在长径比及材料韧性大时,选用较小的切削用量,即多走刀,切深小,以减少振动,增加刚性。

(1)背吃刀量(ap)在工艺系统刚度确定的前提下,随着切削深度的增大,车削时产生的切削力、切削热随之增大,引起细长轴的受力、受热变形也增大。因此在车削细长轴时,应尽量减少背吃刀量。

(2)进给量(f)进给量增大会使切削厚度增加,切削力增大。但切削力不是按正比增大,因此细长轴的受力变形系数有所下降。如果从提高切削效率的角度来看,增大进给量比增大切削深度有利。

(3)切削速度(v)提高切削速度有利于降低切削力。这是因为,随着切削速度的增大,切削温度提高,刀具与工件之间的摩擦力减小,细长轴的受力变形减小。但切削速度过高容易使细长轴在离心力作用下出现弯曲,破坏切削过程的平稳性,所以切削速度应控制在一定范围。对长径比较大的工件,切削速度要适当降低。

三、结论

篇3:浅谈细长丝杠车削方法的改进论文

浅谈细长丝杠车削方法的改进论文

[关键词]细长丝杠螺纹;系统刚性;机械加工;几何精度

[摘要]细长丝杠螺纹的大径与其长度之比为1∶30及其以上时,称为细长丝杠。由于其长径比较大,在机械加工过程中,机床、刀具等整个工艺系统极易弯曲和振动,加工后不能获得满意的表面粗糙度和几何精度。因此,文章探讨细长丝杠车削改进的方法,以解决细长丝杠的车削难题。

细长丝杠螺纹的大径与其长度之比为1∶30及其以上时,称为细长丝杠。丝杠是机械设备中传递运动的构件,是将旋转运动变为直线运动零件之一,不仅能传递一定的动力,准确地传递运动,而且可作精密的直线分度元件。由于其长径比较大,在机械加工过程中,机床、刀具等整个工艺系统极易弯曲和振动,加工后不能获得满意的表面粗糙度和几何精度,还常常由于翘曲、锥度过大、鼓肚或圆度达不到等原因造成工件报废。此外,由于细长丝杠散热性能差,切削过程中切削热使其产生相当大的线膨胀,也使工作产生变形和弯曲。由此可见,车削细长丝杠不仅生产效率很低,而且质量不易保证。为此提出下列方法,以解决细长丝杠的车削难题。

一、提高系统的刚性

由于细长丝杠加工过程的工艺系统刚性较差而影响生产效率和质量,因此必须对机床、工件和刀具作改进。这里主要从工件的装夹方面提出一些改进措施,以达到改善细长丝杠加工的切削条件,提高工件的刚性。

在卡盘装夹工件加工中使用后顶尖支承,比不用后顶尖而形成悬臂时,工件刚性提高很多。在车削细长丝杠时,使用了中心架,使支承间的距离缩短了一半,可提高工件的刚性。采用跟刀架车削细长丝杠时,缩短切削作用点和支承点之间的距离,工件的刚性得到很大的提高,切削作用点和支承点之间的距离约为5~10mm。

二、使用跟刀架

在车床上加工细长丝杠时,一来容易产生振动,不利于切削;二来不易保证零件的质量精度。解决这个难题的方法大致有两方面:其一是在切削时改善刀具的切削角度,选合理的切削用量;其二是增设辅具,即装上跟刀架,用以消除振动,以保证零件的质量和精度。车速也可以相应提高,进给量也可以增大,振动小,车出的零件弯曲度小,提高了生产率,同时也提高了零件的加工精度。

三、装夹方法的改进

在加工细长丝杠时,普遍存在的问题是质量差、效率低。前面已经介绍过提高刚性的方法,但由于切削热的影响,丝杠必然产生热伸长。而此时卡盘和顶尖之间的距离是固定的,则工作轴向就没有伸缩的余地,使丝杠产生弯曲变形。为了减少或消除这种变形,可采用如下方法:

1.在卡盘的每只卡爪与工件之间垫入4mm×10mm的钢丝,夹入长度为15~20mm。垫入钢丝后,使工作件与卡爪之间成线接触,从而使工件与卡爪之间可以有稍许相对运动。避免工作件被卡爪卡死,起到方向调节的作用,减少工件的弯曲变形。

2.将机床尾座顶尖改为带弹簧的弹性顶尖。弹力大小由顶尖顶紧的程度决定。当工作件受切削热产生膨胀而伸长时,推动顶尖压缩弹簧作轴后移,避免了工件产生弯曲变形,从而保证加工精度。

3.采用缩颈法。在丝杠卡盘一头车出一个缩颈部分,缩颈部分的直径d=D/2(D为丝杠的坯料外径)。由于丝杠的缩颈部分直径减小了,其柔性增加,减少和消除由于丝杠本身的弯曲而在卡盘强制夹持下轴心线歪斜的影响,也起到了万向接头一样的作用。

四、工作的校直

细长丝杠料的弯曲,对加工会产生很大的影响,尤其是在高速回转下,由于离心力的惯性作用,加剧了坯料的弯曲变形,并引起振动,造成加工困难,质量降低。因此,细长丝杠在加工过程中的校直工作也是一项必不可少的内容。校直一般分冷校和热校两种,视工艺要求和坯料情况而定。

1.热校。通常在两种情况下采用热校直。一是在热处理后进行(丝杠一般进行调质处理),以消除粗加工和热处理中所产生的弯曲变形。其方法是在工作件热处理后,当工作件冷却到一定程度时,检查工件变形大小,如超过图样技术要求,需进行校直,一般在手压床上进行,校到工艺要求以内。这样校直,工件不易回弹,保证工作精加工之后的质量。

另一种热校方法是在半精加工后进行,其方法是将半精加工后的工件校直后,在一定温度的油池内浸泡,使工件校直过程中的应力得到消除,工件内部组织稳定,精加工之后不易再变回去(恢复到校直前的状态),使工件精加工后的精度得以长期保持。此方法一般用于精度要求较高的丝杠。

2.冷校。冷校也存在以下两种情况:一是在粗车前丝杠毛坯料的校直,以保证粗车后车圆;一是螺纹粗车后,在半精车或精车螺纹前进行。其作用和热校直相同,保证加工顺利进行和提高丝杠加工后的几何精度。

冷校直的方法有两种,通常采取的方法是在手压床上进行,毛坯料校直是在手压床工作台上垫两个等高的V形铁支承工件。半成品校直则用手压床的两顶尖顶住丝杠的中心孔支承。这种方法是用百分表找到丝杠弯曲部分的最高点,用压床的压头直接压最高点(压半成品时中间需垫木板),使工件产生塑性变形,使变曲度控制在工艺要求范围内。这种方法校直的工件,在经过精加工或热处理后,工件有可能会反弹回去,即全部或部分恢复到校直前的状态,造成工件精加工后的精度丧失,影响产品质量。

五、切削方式的改变

在车削加工中,一般走刀方向都是从尾座向床头方向,俗称正走向走刀。车削细长杠时需改用反向走刀,走刀的抗力方向使工件受拉应力。反向切削使工件受到拉伸作用,能消除振颤,使切削平稳,尤其是在车削丝杠外圆和粗切螺纹工序中,由于切削力大,更需要采用反向切削,尾座需装可伸缩的活顶尖。

值得一提的是,在安装刀具时,刀尖应稍高于工件中心线0.1~0.15mm,使切削过程中刀具的'切削前角增大,减少切削力,也就减少切削力对工件的压缩。同时,在切削过程中,刀尖还起着托起工件的作用,用以抵消跟刀架支承块对工件的反作用力,相当于跟刀架的第四个支承块。

为了减少跟刀架支承块与工件的摩擦而造成支承块严重磨损,减少工件温度升高,同时冷却刀刃,在随时注意调整跟刀架松紧程度的同时,还需在切削过程中进行充分冷却和润滑,使切削顺利进行,保证粗车后螺纹的表面粗糙度。

六、合理选择车刀的几何形状

车削细长轴时,由于工件刚性差,刀具几何形状对工件产生的振动非常敏感。如果车刀的几何形状选择不当,也不可能得到良好的效果。选择时主要考虑以下几点:

1.为了减少切削力,减少细长轴的弯曲,车刀的主编角取75°~93°。

2.为了减小切削力,应该选择较大的前角,取15°~30°。

3.车刀前面应该磨有R1.5~3的断屑槽,使切屑卷曲折断。

4.选择负的刃倾角,取-3°~-10°,使切屑流向待加工表面。另一方面,车刀也容易切入工件,并可减少切削力。

5.刀刃粗糙度要高,并要经常保持锋利。

6.为了减少径向切削力,刀尖半径应选得较小(R0.3mm),倒棱的宽度也应选得较小。

七、采用双刀架对刀切削

利用切削力和工件受力变形相抵消的原理,采用双刀架对中,即不需要使用中心架,也不需要使用跟刀架,只需采用适当刀具几何角度的双刀“对刀”切削,不但大大减小了工件弯曲变形,而且还能用大进给量,提高切削速度,同时进行粗车、半精车或精车,缩短加工时间,保证加工质量。

在车床床鞍上装上前后两个中拖板刀架,中拖板的丝杠也改成左右旋螺纹传动。采用前后两把车刀径向相对安装,半精车车刀正装,精车刀反装,沿同一轴向方向走刀,左右旋转丝杠带动两个中拖板刀架同时作径向进刀或退刀,使两刀同时切削,达到切削力相抵消的目的。为了使切削力平衡,精车刀需采用0°后角或小负后角,增加精车刀所产生的切削力,使之与半精车(切削余量大)所产生的切削力相平衡。径向切削力相互抵消,清除了细长丝杠切削容易变形的缺陷。同时精车刀的负后角形成的刀面对工件产生摩擦,使之起到一定的压光作用,改进了表面质量,提高了劳动生产效率。

细长丝杠由于其长径比较大、散热性能差,车削细长丝杠不仅生产效率很低,而且质量不易保证。所以,为了提高劳动生产效率和工作质量,提出解决车削细长丝杠难题的方法。但必须针对具体情况和不同要求单独或混合采用,才能达到预期的效果。

篇4:数控车削加工工艺

摘要:数控车床的使用的目的是加工出合格的零件,但合格零件的加工必须要依靠制定合理的加工工艺。本文针对当前数控车床使用者的工艺分析的不合理来进行对比,讲述合理的工艺分析的顺序问题。

关键词:数控车床 车削加工工艺 工艺分析

一、问题的提出

数控车削加工主要包括工艺分析、程序编制、装刀、装工件、对刀、粗加工、半精加工、精加工。而数控车削的工艺分析是数控车削加工顺利完成的保障。

数控车削加工工艺是采用数控车床加工零件时所运用的方法和技术手段的总和。主要内容包括以下几个方面:

(一)选择确定零件的数控车削加工内容;(二)对零件图进行数控车削加工工艺分析;(三)工具、夹具的选择和调整设计;(四)切削用量选择;(五)工序、工步的设计;(六)加工轨迹的计算和优化;(七)编制数控加工工艺技术文件。

但是分析了上述的顺序之后,发现有点不妥。因为整个零件的工序、工步的设计是工艺分析这一环节中最重要的一部分内容。工序、工步的设计直接关系到能否加工出符合零件形位公差要求的零件。设计不合理将直接导致零件的形位公差达不到要求,导致产生次品。

二、分析问题

数控车床的`使用者的操作水平较高,能够独立解决很多操作难题,但理论水平不是很高,这是造成工艺分析顺序不合理的主要原因, 造成工艺分析顺序不合理的另一个原因是企业的工量具设备不足。

三、解决问题

笔者认为合理的工艺分析步骤应该是:

(一)选择并确定零件的数控车削加工内容;(二)对零件图纸进行数控车削加工工艺分析;(三)工序、工步的设计;(四)工具、夹具的选择和调整设计;(五)切削用量选择; (六)加工轨迹的计算和优化;(七)编制数控加工工艺技术文件。 本文主要对二、三、四、五三个步骤进行详细的阐述。

(一)零件图分析

零件图分析是制定数控车削工艺的首要任务。主要进行尺寸标注方法分析、轮廓几何要素分析以及精度和技术要求分析。此外还应分析零件结构和加工要求的合理性,选择工艺基准。

1.选择基准

零件图上的尺寸标注方法应适应数控车床的加工特点,以同一基准标注尺寸或直接给出坐标尺寸。这种标注方法既便于编程,又有利于设计基准、工艺基准、测量基准和编程原点的统一。

2.节点坐标计算

在手工编程时,要计算每个节点坐标。在自动编程时要对零件轮廓的所有几何元素进行定义。

3.精度和技术要求分析

对被加工零件的精度和技术进行分析,是零件工艺性分析的重要内容,只有在分析零件尺寸精度和表面粗糙度的基础上,才能正确合理地选择加工方法、装夹方式、刀具及切削用量等。

(二)工序、工步的设计

1.工序划分的原则

(1)保持精度原则。工序一般要求尽可能地集中,粗、精加工通常会在一次装夹中全部完成。 为减少热变形和切削力变形对工件的形状、位置精度、尺寸精度和表面粗糙度的影响,则应将粗、精加工分开进行。

(2)提高生产效率原则。为减少换刀次数,节省换刀时间,提高生产效率,应将需要用同一把刀加工的加工部位都完成后,再换另一把刀来加工其他部位,同时应尽量减少空行程。

2.确定加工顺序

(1)先粗后精。按照粗车半精车精车的顺序进行,逐步提高加工精度。

(2)先近后远。离对刀点近的部位先加工,离对刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间。

(3)内外交叉。对既有内表面又有外表面需加工的零件,应先进行内外表面的粗加工,后进行内外表面的精加工。

(4)基面先行。作精基准的表面应优先加工出来,定位基准的表面越精确,装夹误差越小。

(三)夹具和刀具的选择

1.工件的装夹与定位

数控车削加工中尽可能一次装夹后能加工出全部或大部分代加工表面,尽量减少装夹次数,以保证加工精度。对于轴类零件,通常以零件自身的外圆柱面作定位基准;对于套类零件,则以内孔为定位基准。数控车床夹具除了使用通用的三爪自动定心卡盘、四爪卡盘、液压、电动及气动夹具外,还有多种通用性较好的专用夹具。操作时应合理选择 。

2.刀具选择

刀具的使用寿命除与刀具材料相关外,还与刀具的直径有很大的关系。刀具直径越大,能承受的切削用量也越大。所以在零件形状允许的情况下,采用尽可能大的刀具直径是延长刀具寿命,提高生产率的有效措施。数控车削常用的刀具一般分为3类。即尖形车刀、圆弧形车刀和成型车刀。

(四)切削用量选择

数控车削加工中的切削用量包括背吃刀量ap、主轴转速S(或切削速度υ)及进给速度F(或进给量f )。

切削用量的选择原则,合理选用切削用量对提高数控车床的加工质量至关重要。确定数控车床的切削用量时一定要根据机床说明书中规定的要求,以及刀具的耐用度去选择,也可结合实际经验采用类比法来确定。

一般的选择原则是:粗车时,首先考虑在机床刚度允许的情况下选择尽可能大的背吃刀量ap;其次选择较大的进给量f;最后再根据刀具允许的寿命确定一个合适的切削速度υ。增大背吃刀量可减少走刀次数,提高加工效率,增大进给量有利于断屑。

精车时,应着重考虑如何保证加工质量,并在此基础上尽量提高加工效率,因此宜选用较小的背吃刀量和进给量,尽可能地提高加工速度。主轴转速S(r/min )可根据切削速度υ(mm/min)由公式 S=υ1000/πD(D为工件或刀/具直径 mm)计算得出,也可以查表或根据实践经验确定。

三、结 语

数控机床作为一种高效率的设备,欲充分发挥其高性能、高精度和高自动化的特点,除了必须掌握机床的性能、特点及操作方法外,还应在编程前进行详细的工艺分析和确定合理的加工工艺,以得到最优的加工方案。

参考文献:

[1]《数控车削加工工艺性分析》.周鹏.《消费导刊·理论版》 第1期

篇5:数控加工中车削工艺

数控加工中车削工艺

【摘 要】数控机床的加工工艺与普通机床的加工艺虽有诸多相同之处,但也有许多不同之处。

为此,分析了数控车削的加工工艺。

数控机床产生20世纪40年代,随着科学技术和社会生产的发展,机械产品的形状和结构不断改进,对零件的加工质量要求越来越高,零件的形状越来越复杂,传统的机械加工方法已无法达到零件加工的要求,迫切需要新的加工方法。

数控车床又称为CNC(computer numerical control)车床,即用计算机数字控制的车床,是国内使用量最大、覆盖面最广的一种数控机床。

CNC车床能加工各种形状不同的轴类、盘类即其它回转体零件。

【关键词】数控车床;车削加工;工艺分析

0.前言

数控机床作为一种使用广泛、典型的机电一体化产品,综合应用了微电子技术、计算机技术、自动控制、精密测量和机床结构等方面的最新成就,是一种高效的自动化机床。

随着科学技术的不断发展,迄今,国际上又出现了以一台或多台加工中心、车削中心为主体,再配以工件自动装卸和监控检查装置的柔韧性制造系统FMS、计算机集成制造系统CIMS和无人化工厂FA。

由于数控机床极高效率、高精度和高柔韧性于一身,很好的代表了机床的主要发展方向。

时代和社会生产力的不断发展,要求数控系统与数控机床向更高的水平与层次迈进(高精度化、运动高速化、高柔韧性化、智能化)。

1.零件图纸分析

1.1零件的特征

拿到图纸首先了解零件的材料;然后从图纸中看出该零件轮廓是由哪些部分构成的,最后分析这些部分包括哪些加工。

1.2数值计算

生活中,我们对几何信息的认知有多种方法,常用的有数形结合法(解析法)。

但有时面对复杂的图形,解析法会带来繁重的数学计算。

CAD作为一套专业的绘图软件,它强大的信息处理功能为图形中繁杂点的计算带来了可能。

我们在操作界面中绘制图形后就可以打开状态栏中的捕捉、对象捕捉按钮,在绘图区捕捉相关的点。

同时,在状态栏中就可以看到这些点的坐标。

2.工件定位与装夹的分析

2.1加工精度要求

明确加工图纸上数值所示的加工精度要求。

2.2定位基准的选择

定位基准选择原则有以下4种:

(1)基准重合原则(2)基准统一原则(3)便于装夹原则(4)便于对刀原则。

根据定位基准选择原则,避免不重合误差,便于编程,以工序的设计基准作为定位基准。

2.3装夹方式

夹具的作用是保证工件在机床上的正确位置和牢固的安装,即定位和夹紧,从而使数控加工顺序进行,保证工件的位置精度,同时也保证工件坐标系能够建立在正确的位置上。

车削加工的工件一般是回转体,对于回转体零件,一般选择三爪自定心卡盘。

2.4工艺过程制定

由于每个零件结构形状不同,各表面的技术要求也有所不同,故加工时,其定位方式则各有差异。

一般加工外形时,以内形定位;加工内形时又以外形定位。

因而可根据定位方式的不同来划分工序。

3.切削用量分析

3.1切削用量

切削用量包括切削速度,背吃刀量和进给量.对于不同的加工方法需要选择不同的切削用量。

粗加工时一般以加工效率为主通常选择较大的背吃刀量和进给量,采用较小的切削速度 。

精加工时通常选择较小的背吃刀量和进给量采用较高的切削速度。

3.2主轴转速的确定

主轴的转速是由切削刃上选定点相对于工件的`主运动的线速度。

主运动速度:n=1000Vc/πd 单位为r/min

4.数控车床对刀分析

4.1刀位点

在进行数控加工的编程时,往往将整个刀具浓缩视为一个点,那就是刀位点,它是在刀具上用于表现刀具位置的参照点。

对刀操作就是要测定出程序起点处刀具刀位点相对机床原点以及工件原点的坐标位置。

在对刀时,常用的仪器有:对刀测头、千分表或对刀瞄准仪等。

对刀点可以设置在零件、夹具上或机床上面(尽可能设置在零件的设计基准或工艺基准上)。

4.2 待加工毛坯的对刀

试切端面:将两端面已经加工好的待加工毛坯装夹到主轴上,在工件的伸出端安装Z 轴向设定器。

快移刀具接近到Z 轴向设定器,改用增量方式控制刀具工进,至到指示灯亮时停止动作,保持 Z轴 向不动,取出轴向设定器。

然后在机床操作面板上调出刀具补偿菜单栏中刀偏表,在相关的试切长度填空栏中键入有关数值(当前刀具刀位点相对于程序原点的距离)。

试切外圆:快速将刀具刀位点移动刀毛坯端面角附近,然后用增量方式调节X、Z 轴向进给至刀位点刚好切到毛坯外表面,再用MDI方式运行进行外圆车削。

同时保持X轴轴向坐标不变,退出刀具。

用游标卡尺测量出试切外圆直径。

然后在刀偏表中键入试切直径。

4.3刀偏值的测定

刀偏值就是各刀具相对于基准刀具的几何补偿。

用点动或步进方式操作移动刀具,使基准刀具刀位点对准工件的基准点,然后进行X轴 Z轴坐标清零,退刀。

换置刀具,再用点动或步进方式使该刀具刀位点对准工件上的同以一基准点,此时屏幕上显示的坐标既是该刀号刀具的几何偏置△Xj,△Zj。

同理,可依次测定出其它刀具相对于基准刀具的几何偏置。

在相应的刀偏表中依次键入选用刀具刀位点的几何补偿。

5.总结

近年来,在国外的数控系统与伺服系统制造技术突飞猛进的大背景下,通过大量的技术引进,我国现代制造工业在飞速发展(数控技术得到广泛的应用)。

同时,我们还要看清现阶段中国数控业与世界先进水平的差距。

我国只有拥有完全自主知识产权上的数控核心技术,才能实现真正意义上的“世界工厂”和“制造大国”乃至“工业强国”。

这使国人不得不开始重新思索中国数控在未来的发展之路。

【参考文献】

[1]赵长明.数控加工工艺及设备.北京:高等教育出版社..

[2]夏凤芳.数控机床.北京:高等教育出版社..

[3]袁哲俊.金属切削刀具.上海:上海科学技术出版社.1993.

[4]蔡兰,王霄.数控加工工艺学.化学工业出版社.2005.

[5]王爱玲.数控机床加工工艺.北京:机械工业出版社..

[6]刘靖华.数控加工技术.高等教育出版社.2003.

[7]徐宏海.数控加工工艺.化学工业出版社..

篇6:数控车削加工工艺论文

数控车削加工工艺论文

数控车削加工工艺论文【1】

摘要:数控车削加工工艺是目前数控机床这种高效率设备必须重视的一个首要问题,现代数控加工工艺是影响机床效率的关键所在,与普通机床的加工工艺相比较存在着很多不同之处,科学合理的加工工艺是本文探讨的主题,改善工艺技术的不合理性,加大对加工工艺的重视力度是未来的发展趋势,本文就数控车削加工工艺进行了具体的分析,并提出了科学合理的改进建议。

关键词:数控机床 加工工艺 分析

在科技超速发展的社会中,数控机床的各项技术也在突飞猛进的前进着,现代化的技术水平要求我们必须不断地随着社会的脚步发展,运用科学的理论与扎实的实际相结合起来,去对数控技术进行改进,使我国数控车削加工技术位于世界领先状态。

数控车削加工工艺科学的分析是保障数控车削加工零件顺利完成的前提条件,分析的内容包括切削用量及确定零件的选择、设计工序及工步、优化并计算加工的轨迹、图纸的加工工艺分析、选择设计工具及夹具、加工工艺技术文件的编制。

由此可见,数控加工工艺性分析是整个零件加工的方法和技术手段结合体。

本文就数控车削加工工艺进行了具体的分析,并提出了科学合理的改进建议。

1 数控车削加工工艺具体的分析

1.1 零件图的具体分析

(1)数控车削工艺首先要考虑的就是零件图的合理性。

主要在三方面进行分析,即零件图上的尺寸标注方法是否适和数控机床的加工要求、分析节点坐标的计算和分析被加工零件的精度与技术程度要求。

(2)零件图上的尺寸标注方法是否适和数控机床的加工要求,这决定了加工零件的合理性,同一基准下直接给出标注尺寸,可以使设计、工艺、测量的基准和编程原点统一起来。

这样就可以避免不必要的麻烦,使各种编程计算得到简单化。

(3)分析节点坐标的计算,在对零件进行加工中包括手工编程与自动编程,在手工编程时要计算出每个节点坐标,在自动编程时则要定义所有几何元素。

所以,在进行分析零件图时,要分析节点坐标的计算。

(4)分析被加工零件的精度与技术程度要求,想要选择出零件合理地加工方法、装夹方式及切削用量等等,必须分析出零件具体尺寸加上高超的技术水平。

充分考虑各种可能性,做好假如达不到预想效果时的补救措施,在既定目标下完成好各个环节,并及时根据实际情况变换切削速度,任何情况下都要保证工作质量,事实就是,不掩盖事实。

1.2 分析加工中如何选择夹具与刀具

装夹的最低次数是提高加工效率的表现,同时要确保精准的加工质量。

零件本身的外圆柱面是轴类零件的定位基准,套类零件则是内孔为基准,合理选择夹具非常重要;刀具选择也有技巧可循,寿命越长的刀具越能承受越多的切削用量,直径越大的刀具寿命越长。

尖形、圆弧形和成型车刀是最常用的刀具。

1.3 工序的科学划分

(1)保持精度原则和提高生产效率原则是数控机床加工时的两种划分原则。

保持精度也就是工序要尽量集中,粗、细在完成过程中应该分开进行,这样就会降低热及切削刀变形对工件的位置、尺寸精度等得影响,保证工件的形状要求;提高生产效率的原则,也就是在操作过程中提高成功率,减少换刀次数,节省时间,也应该减少空行程。

(2)加工顺序遵循先粗后精、先近后远、内外交叉和基面先行的原则。

提高加工精度是要逐步完成的,切削条件的改善至关重要。

2 数控车削加工工艺现存的问题

(1)数控加工操作人员的理论水平受限,从事多年的数控车削加工人员积累了丰富的实践经验,但目前科技及各方面的飞速发展,操作者的理论知识水平并没有完全适应整个社会的发展水平。

因此,导致了一些新技术没能及时的运用到实践中去,这样也就是阻碍了我国整个数控领域的发展水平。

(2)数控企业的投资相对不足影响加工工艺的发展,在我国很多数控加工企业为了得到更多的利润,投入的就相对不足,工量具的设备不足也导致了在实际操作中的障碍出现,在加工的工程中出现问题零件,没有合适的工具而不能及时的补救零件,降低了工作的效率。

3 具体的改进措施

(1)企业加大对现有技术人员的培训力度,制定出具体的进修计划,大力培养在职技术人员的理论水平,从而提高工作效率;同时积极引进高学历技术人员,通过他们先进的理念及时的对现有的'数控车削加工工艺进行科学的分析调整,使数控车削加工工艺适应社会的发展状态,不落后于其他企业或国家。

(2)企业高管要把眼光放远,加大投资力度,保证企业的顺利发展。

只要坚持原则,投入越多回报越大,这是一个正常的发展规律,运用科学、先进的理论进行数控车削的加工工艺分析,与实际的操作结合起来,肯定会为企业带来更多的效益。

4 结语

数控车削加工工艺作为数控机床这种高效率设备的必要条件,其科学合理的程度显得尤为重要,分析这种加工工艺必须具备高素质的头脑,掌握数控机床的操作技巧、特点及性能,在编程前也要进行详细的分析,制定科学合理的加工工艺,这样就会把数控机床的高性能、高自动化和高精度的特点发挥出来,使最合理的加工方案得到最丰厚的回报,为企业带来巨大的效益,为国家创造更大的价值。

参考文献

[1] 康战,聂凤明,刘劲松,等.单点金刚石精密数控车削加工技术及发展前景分析[J].光学技术,,2.

[2] 王宝雨,张康生,刘晋平,等.斜轧球类件轧辊的数控车削加工及误差分析[J].北京科技大学学报,,02.

[3] 周国柱,王文平.数控车削自动编程中的工艺路线自动生成[J].中国机械工程,1995,01.

数控车削加工精度控制【2】

摘要:数控车削加工技术已广泛应用于机械制造行业,如何高效、合理、按质、按量完成工件的加工,每个从事该行业的工程技术人员或多或少都有自己的经验。

现以广州数控设备厂生产的GSK980TB系列机床为例,介绍几例数控车削加工精度控制技巧。

关键词: 数控车削 控制 尺寸精度 技巧

机械加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数相符合的程度。

它们之间的差异称为加工误差。

加工误差的大小反映了加工精度的高低。

误差越大加工精度越低,误差越小加工精度越高。

篇7:数控车削加工工艺优化研究论文

摘要:本文将结合纯镍材料的性能,探究纯镍的车削加工工艺优化技术,进而推动数控车削加工工艺的创新和发展。

关键词:机械加工;纯镍;数控车削;加工工艺

1纯镍材料的性能

金属加工技术是数控车削加工工艺的重要内容。在确定加工方案前,要充分了解金属的性能,结合金属的特性制定可行的加工工艺方案。纯镍是一种耐腐蚀性强、机械强度大、塑性良好的金属,用于机械制造等多个方面。其中,工业上应用最广泛的是耐碱性、耐腐蚀性、机械性能好的N6材料。纯镍N6的机械性能,如表1所示。由表1可知,纯镍材料的机械强度大,加工性能较差,被列为难加工的材料之一。在对纯镍材料进行车削时,刀具会因纯镍的机械性能等原因产生较大的磨损。车削时,切削热主要集中在刀刃附近,后刀面易出现沟槽,影响纯镍材料的车削加工。因此,深入探讨解决上述问题的方法,对优化纯镍材料的数控车削加工工艺十分重要。

篇8:数控车削加工工艺优化研究论文

数控车削加工的主要目的是对工件进行精密加工,主要方法是通过操纵控制系统控制数控机床刀具的轨迹,以完成工件的车削过程。进行加工前,确定刀具和工件处于同一个坐标系中是极为关键的一点。随着技术的不断发展,编程语言的规范化、控制系统的智能化使得数控机床的加工工艺逐渐标准化、成熟化。数控车削加工工艺主要包括八个过程:加工工艺分析;程序的编程;加工过程中的装刀;装刀组;加工前的对刀;粗加工工艺;半精加工工艺;精加工。这八个主要的加工过程能够保证加工过程的顺利进行。同时,加工技术和加工方法的协调合作,才能实现对工件的精密加工。下面简单介绍数控车削的主要加工工艺。

2.1加工机床的选择

选择加工机床时,要考虑工件的因素和数控机床参数等因素。因为数控机床都有一定的使用范围,因而在选择时要做出相应判断。选择机床时,要根据工件的尺寸、形状、结构、加工要求等进行挑选。同时,机床自身的性能、参数等也会对工件的加工产生一定限制,如主轴转速、最大回转半径等,都是挑选机床时需要考虑的因素。

2.2车削刀具的选择及切削用量

刀具是对工件切削的重要工具。选择刀具时,要综合考虑工件、刀具以及机床三方面的因素。只有这三个方面相互适应、相互协调,才能实现对工件的加工。对于刀具的挑选,要重点考虑以下两个因素。刀具的材质和性能。刀具的性能直接影响加工精度,而刀具的材质制约着刀具的性能。一般情况下,刀具的材质越好,性能也相对越好。选择刀具时,不但要考虑刀具的强度、导热性、硬度等物理特性,还要考虑经济适用性,做到刀具的材质、性能以及经济适用性三者平衡。刀具的形状和尺寸。刀具的外形需要根据要加工的工件进行具体选择,最优的选择是能满足更多的工件完成加工工作。同时,在各种条件都允许的情况下,可以适当选择直径较大的刀具,这有利于提高切削效率,延长使用寿命。切削用量控制着各个工序的运行,每道工序的参数指标都和切削用量息息相关。编程过程中,要重点考虑切削用量。切削用量会对切削深度、进给速度、切削速度产生影响,因此合理确定的切削用量可以加快工作效率,保证加工工艺快速高效完成。

篇9:数控车削加工工艺优化研究论文

3.1纯镍的数控车削加工工艺存在的问题

经多次试验验证,在对纯镍材料进行加工的过程中,存在刀具磨损严重、使用寿命短、生产效率低下的问题。切削过程中,纯镍材料与刀具的摩擦会产生强烈的震动和高噪声(经检测已超过100dB)。由于刀具的磨损非常严重,在切削一个工件时就要更换十余次刀具。频繁更换刀片造成工件的表面光度不够,只能在加工后期使用锉刀纱布对工件继续打光磨平,浪费了大量人力物力。此外,每次更换刀具都要经历编程、对刀、关闭启动计算机等工序,容易造成计算机故障。事实上,经此工艺加工的工件,不能很好地保障质量,且生产效率低下。如果造成一件工件成为废品,将会产生较大的经济损失。可见,这样进行批量生产时,产品效率和质量均不能保证。因此,探寻优化纯镍的车削加工工艺迫在眉睫。此外,选择采用耐磨性能较好的刀具进行切削时,上述问题仍然存在。因此,还需要寻找新的途径解决上述问题。

3.2纯镍加工时刀具磨损的特点

由试验观察可知,切削纯镍工件时,刀具的磨损主要集中在刀刃附近,且刀刃处的切割热也较高。切削完成后,在副后刀面上会出现一道清晰的沟槽。在切削速度较低的情况下,会出现刀面的磨损,切削面也因较高的切割热而变形,而沟槽的出现会引起强烈的震动和噪声。上述现象会使刀具过早失效,造成加工效率低下、工件表面质量不高、刀具的寿命缩短。3.3纯镍的数控车削加工工艺优化在经历多次探索和尝试后,终于找到了可以解决刀具磨损严重、产生明显沟槽等问题的方法,下面简述这三种新途径。

3.3.1采用涂层硬质合金刀具

在分析刀具磨损成因时,判断镍-钴的亲合会造成刀具的严重磨损。为避免这种状况的发生,决定采用TiN(TiC)涂层硬质合金刀片进行试验。在按照正常的工序加工工件后,于显微镜下观察刀具的磨损程度。结果显示,涂层虽然脱落,但刀具表面无明显的磨损痕迹,且副刀面无沟槽。涂层的脱落可能是牢固度不够,在改进工艺加固涂层后可以取得更好效果。

3.3.2复合聚晶立方氮化硼车削刀

硬质合金会因扩散机理而产生沟槽,采用涂层涂抹合金也增加了刀具成本。经验证,采用复合聚晶立方氮化硼车削刀效果甚佳。复合聚晶立方氮化硼车削刀的硬度与硬质合金刀具相比可以提高20倍,在车削过程中无噪声、无振动,工件表面的光度良好,切屑均匀,无沟槽的产生。分析机理,主要是因为复合聚晶立方氮化硼车削刀硬度高、热稳定性好,因而适于切削纯镍材料。

3.3.3新型陶瓷刀具

山东工业大学研制的新型陶瓷车刀SG5是一种高强度、高热稳定性、高硬度的新型刀具,主要成分是Al2O3-SiC。该刀具硬度是硬质合金刀具的10倍,可以满足切削要求,且成本只有立方氮化硼刀具的1/10,在适用价值和经济适用性上都满足条件,可以经过进一步验证推广。以上三种新方法尚未成熟,有必要进行进一步探讨。但是,这三种方式都具有一定的实用价值,可为数控车削纯镍材料的工艺改进提供一定的借鉴。

4结语

纯镍材料的数控车削加工工艺一直存在刀具磨损严重、噪声大、震动大等问题。解决这些问题,对推进数控车削工艺的发展具有重要意义。本文经分析产生上述问题的机理和成因,提出了三种优化措施。多次试验显示,三种方式基本能解决前述问题,且经济适用性较好,有进一步研究推广的空间。探究纯镍材料的数控车削加工工艺的优化方法有利于推动镍类材料的加工工艺的发展,进而加速数控车削加工工艺的成熟。

参考文献

[1]徐世鹏,李祯.纯镍的车削加工[J].航天工艺,1983,(3):12-14.

[2]刘藜,陶起伦,李祯.纯镍的车削和断屑切削试验[J].航天工艺,1985,(2):27-33.

[3]倪春杰.轴上套环的数控车削加工工艺设计及优化[J].兰州石化职业技术学院学报,2016,(2):12-14.

[4]朱岩涛.面向能效的数控加工工艺参数优化方法研究及应用[D].重庆:重庆大学,2016.

车削实习心得202

典型零件加工工艺(DOC18)

车工技能鉴定

车工技能鉴定试题图纸

机械加工深孔加工技术研究的论文

机械制造技术试题以及答案

车工个人工作总结

车工工作个人总结

普车顶岗实习总结范文大全

普车训练计划

细长轴数控车削方法
《细长轴数控车削方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【细长轴数控车削方法(共9篇)】相关文章:

行车工个人工作总结2023-10-31

零件制造实习报告2023-08-30

数控毕业论文范文2023-02-15

数控毕业论文2023-02-07

数控车床实训中的工艺与编程2022-11-01

机械制造技术试题2022-05-07

金工实习报告车工2022-12-17

公司行政专员顶岗实习周记2023-07-29

普车床实训心得体会2022-04-30

乘用车气缸套加工工艺研究论文2022-09-12

点击下载本文文档